World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Generalization of the Periodic Orbit Dividing Surface for Hamiltonian Systems with Three or More Degrees of Freedom-III

    https://doi.org/10.1142/S0218127423500888Cited by:9 (Source: Crossref)

    In two previous papers [Katsanikas & Wiggins, 2021a, 2021b], we developed two methods for the construction of periodic orbit dividing surfaces for Hamiltonian systems with three or more degrees of freedom. We applied the first method (see [Katsanikas & Wiggins, 2021a]) in the case of a quadratic Hamiltonian system in normal form with three degrees of freedom, constructing a geometrical object that is the section of a 4D toroidal structure in the 5D energy surface with the space x=0x=0. We provide a more detailed geometrical description of this object within the family of 4D toratopes. We proved that this object is a dividing surface and it has the no-recrossing property. In this paper, we extend the results for the case of the full 4D toroidal object in the 5D energy surface. Then we compute this toroidal object in the 5D energy surface of a coupled quadratic normal form Hamiltonian system with three degrees of freedom.