Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    The Generalization of the Periodic Orbit Dividing Surface in Hamiltonian Systems with Three or More Degrees of Freedom – I

    We present a method that generalizes the periodic orbit dividing surface construction for Hamiltonian systems with three or more degrees of freedom. We construct a torus using as a basis a periodic orbit and we extend this to a (2n2)-dimensional object in the (2n1)-dimensional energy surface. We present our methods using benchmark examples for two and three degrees of freedom Hamiltonian systems to illustrate the corresponding algorithm for this construction. Towards this end, we use the normal form quadratic Hamiltonian system with two and three degrees of freedom. We found that the periodic orbit dividing surface can provide us the same dynamical information as the dividing surface constructed using normally hyperbolic invariant manifolds. This is significant because, in general, computations of normally hyperbolic invariant manifolds are very difficult in Hamiltonian systems with three or more degrees of freedom. However, our method avoids this computation and the only information that we need is the location of one periodic orbit.

  • articleOpen Access

    The Generalization of the Periodic Orbit Dividing Surface for Hamiltonian Systems with Three or More Degrees of Freedom-III

    In two previous papers [Katsanikas & Wiggins, 2021a, 2021b], we developed two methods for the construction of periodic orbit dividing surfaces for Hamiltonian systems with three or more degrees of freedom. We applied the first method (see [Katsanikas & Wiggins, 2021a]) in the case of a quadratic Hamiltonian system in normal form with three degrees of freedom, constructing a geometrical object that is the section of a 4D toroidal structure in the 5D energy surface with the space x=0. We provide a more detailed geometrical description of this object within the family of 4D toratopes. We proved that this object is a dividing surface and it has the no-recrossing property. In this paper, we extend the results for the case of the full 4D toroidal object in the 5D energy surface. Then we compute this toroidal object in the 5D energy surface of a coupled quadratic normal form Hamiltonian system with three degrees of freedom.

  • articleNo Access

    3D Generating Surfaces in Hamiltonian Systems with Three Degrees of Freedom – I

    In our earlier research (see [Katsanikas & Wiggins, 2021a, 2021b, 2023a, 2023b, 2023c]), we developed two methods for creating dividing surfaces, either based on periodic orbits or two-dimensional generating surfaces. These methods were specifically designed for Hamiltonian systems with three or more degrees of freedom. Our prior work extended these dividing surfaces to more complex structures such as tori or cylinders, all within the energy surface of the Hamiltonian system. In this paper, we introduce a new method for constructing dividing surfaces. This method differs from our previous work in that it is based on 3D surfaces or geometrical objects, rather than periodic orbits or 2D generating surfaces (see [Katsanikas & Wiggins, 2023a]). To explain and showcase the new method and to present the structure of these 3D surfaces, the paper provides examples involving Hamiltonian systems with three degrees of freedom. These examples cover both uncoupled and coupled cases of a quadratic normal form Hamiltonian system. Our current paper is the first in a series of two papers on this subject. This research is likely to be of interest to scholars and researchers in the field of Hamiltonian systems and dynamical systems, as it introduces innovative approaches to constructing dividing surfaces and exploring their applications.

  • articleNo Access

    3D Generating Surfaces in Hamiltonian Systems with Three Degrees of Freedom – II

    Our paper is a continuation of a previous work referenced as [Katsanikas & Wiggins, 2024b]. In this new paper, we present a second method for computing three-dimensional generating surfaces in Hamiltonian systems with three degrees of freedom. These 3D generating surfaces are distinct from the Normally Hyperbolic Invariant Manifold (NHIM) and have the unique property of producing dividing surfaces with no-recrossing characteristics, as explained in our previous work [Katsanikas & Wiggins, 2024b]. This second method for computing 3D generating surfaces is valuable, especially in cases where the first method is unable to achieve the desired results. This research aims to provide alternative techniques and solutions for addressing specific challenges in Hamiltonian systems with three degrees of freedom and improving the accuracy and reliability of generating surfaces. This research may find applications in the broader field of dynamical systems and attract the attention of researchers and scholars interested in these areas.