Improved FunkSVD Algorithm Based on RMSProp
Abstract
To solve the problem of low accuracy in the traditional FunkSVD recommendation algorithm, an improved FunkSVD algorithm (RM-FS) is proposed. RM-FS is an improvement of the traditional FunkSVD algorithm, using RMSProp, a deep learning optimization algorithm. The RM-FS algorithm can not only solve the problem of reduced accuracy of the traditional FunkSVD algorithm because of iterative oscillations but also alleviate the impact of data sparseness on the accuracy of the algorithm, achieving the effect of improving the accuracy of the traditional algorithm. The experimental results show that the RM-FS algorithm proposed in this paper effectively improves the accuracy of the recommendation algorithm, which is better than the traditional FunkSVD recommendation algorithm and other improved FunkSVD algorithms.
This paper was recommended by Regional Editor Tongquan Wei.