World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON PERIODIC ORBITS AND HOMOCLINIC BIFURCATIONS IN CHUA’S CIRCUIT WITH A SMOOTH NONLINEARITY

    https://doi.org/10.1142/S021812749300026XCited by:83 (Source: Crossref)

    We present the bifurcation analysis of Chua’s circuit equations with a smooth nonlinearity, described by a cubic polynomial. Our study focuses on phenomena that can be observed directly in the numerical simulation of the model, and on phenomena which are revealed by a more elaborate analysis based on continuation techniques and bifurcation theory. We emphasize how a combination of these approaches actually works in practice. We compare the dynamics of Chua’s circuit equations with piecewise-linear and with smooth nonlinearity. The dynamics of these two variants are similar, but we also present some differences. We conjecture that this similarity is due to the central role of homoclinicity in this model. We describe different ways in which the type of a homoclinic bifurcation influences the behavior of branches of periodic orbits. We present an overview of codimension 1 bifurcation diagrams for principal periodic orbits near homoclinicity for three-dimensional systems, both in the generic case and in the case of odd symmetry. Most of these diagrams actually occurs in the model. We found several homoclinic bifurcations of codimension 2, related to the so called resonant conditions. We study one of these bifurcations, a double neutral saddle loop.