World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Jacobi stability analysis of modified Chua circuit system

    https://doi.org/10.1142/S021988781750089XCited by:25 (Source: Crossref)

    In this paper, we analyze the nonlinear dynamics of the modified Chua circuit system from the viewpoint of Kosambi–Cartan–Chern (KCC) theory. We reformulate the modified Chua circuit system as a set of two second-order nonlinear differential equations and obtain five KCC-invariants which express the intrinsic geometric properties. The deviation tensor and its eigenvalues are obtained, that determine the stability of the system. We also obtain the condition for Jacobi stability and discuss the behavior of deviation vector near equilibrium points.

    AMSC: 53B40, 53C22, 53C60
    Remember to check out the Most Cited Articles!

    Check out new Mathematical Physics books in our Mathematics 2021 catalogue
    Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!