Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, Rössler system has been studied by using differential geometry method i.e. with KCC-theory. We obtained the deviation tensor and its eigenvalue which determine the stability of Rössler system. We also consider the time evolution of the components of deviation tensor and deviation vector near the equilibrium points.
In this paper, a 4D Lorenz-type multistable hyperchaotic system with a curve of equilibria is investigated by using differential geometry method, i.e. with KCC-theory. Due to the deviation curvature tensor and its eigenvalues, the curve of equilibria of this hyperchaotic system is proved analytically to be Jacobi unstable under a certain parameter condition, and a periodic orbit of this system is proved numerically to be also Jacobi unstable. Furthermore, the dynamics of contravariant vector field near the curve of equilibria and the periodic orbit are studied, respectively, and their results comply absolutely with the above analysis of Jacobi stability.
In this paper, the research of the Jacobi stability of the Chen system is performed by using the KCC-theory. By associating a nonlinear connection and a Berwald connection, five geometrical invariants of the Chen system are obtained. The Jacobi stability of the Chen system at equilibrium points and a periodic orbit is investigated in terms of the eigenvalues of the deviation curvature tensor. The obtained results show that the origin is always Jacobi unstable, while the Jacobi stability of the other two nonzero equilibrium points depends on the values of the parameters. And a periodic orbit of the Chen system is proved to be also Jacobi unstable. Furthermore, Jacobi stability regions of the Chen system and the Lorenz system are compared. Finally, the dynamical behavior of the components of the deviation vector near the equilibrium points is also discussed.
In this paper, the Jacobi stability of a two-degree-of-freedom mechanical system is studied by the innovative application of KCC-theory, namely differential geometric methods. We discuss the Jacobi stability of two equilibria and a periodic orbit by constructing geometric invariants. Both the regions of Jacobi stability and Lyapunov stability are presented to show the difference. We draw the phase portraits of the deviation vector near two equilibria under specific parameter values and initial conditions, and point out the sensitivity of deviation vector to initial conditions. In addition, the corresponding instability exponent and curvature are applicable for predicting the onset of chaos, which help us to detect chaotic behaviors quantitatively.
In this paper, we analyze the nonlinear dynamics of the modified Chua circuit system from the viewpoint of Kosambi–Cartan–Chern (KCC) theory. We reformulate the modified Chua circuit system as a set of two second-order nonlinear differential equations and obtain five KCC-invariants which express the intrinsic geometric properties. The deviation tensor and its eigenvalues are obtained, that determine the stability of the system. We also obtain the condition for Jacobi stability and discuss the behavior of deviation vector near equilibrium points.
In this paper, Jacobi stability of a segmented disc dynamo system is geometrically investigated from viewpoint of Kosambi–Cartan–Chern (KCC) theory in Finsler geometry. First, the geometric objects associated to the reformulated system are explicitly obtained. Second, the Jacobi stability of equilibria and a periodic orbit are discussed in the light of deviation curvature tensor. It is shown that all the equilibria are always Jacobi unstable for any parameters, a Lyapunov stable periodic orbit falls into both Jacobi stable regions and Jacobi unstable regions. The considered system is not robust to small perturbations of the equilibria, and some fragments of the periodic orbit are included in fragile region, indicating that the system is extremely sensitive to internal parameters and environment. Finally, the dynamics of the deviation vector and its curvature near all the equilibria are presented to interpret the onset of chaos in the dynamo system. In a physical sense, magnetic fluxes and angular velocity can show irregular oscillations under some certain cases, these oscillations may reveal the irregularity of magnetic field’s evolution and reversals.
This paper is concerned with the Jacobi stability of the Shimizu–Morioka model by using the KCC-theory. First, by associating the nonlinear connection and Berwald connection, five geometrical invariants of the dynamical model are obtained. Furthermore, the Jacobi stability of the Shimizu–Morioka model at equilibrium is studied in terms of the eigenvalues of the deviation curvature tensor. It shows that the three equilibria are always Jacobi unstable. Finally, the dynamical behavior of the components of the deviation vector is discussed, which geometrically characterizes the chaotic behavior of studied model near the origin. It proved the onset of chaos in the Shimizu–Morioka model.
In this paper, we qualitatively study radial solutions of the semilinear elliptic equation Δu+un = 0 with u(0) = 1 and u′(0) = 0 on the positive real line, called the Emden–Fowler or Lane–Emden equation. This equation is of great importance in Newtonian astrophysics and the constant n is called the polytropic index.
By introducing a set of new variables, the Emden–Fowler equation can be written as an autonomous system of two ordinary differential equations which can be analyzed using linear and nonlinear stability analysis. We perform the study of stability by using linear stability analysis, the Jacobi stability analysis (Kosambi–Cartan–Chern-theory) and the Lyapunov function method. Depending on the values of n these different methods yield different results. We identify a parameter range for n where all three methods imply stability.