World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NONLINEAR STABILITY ANALYSIS OF THE EMDEN–FOWLER EQUATION

    https://doi.org/10.1142/S1402925110001100Cited by:44 (Source: Crossref)

    In this paper, we qualitatively study radial solutions of the semilinear elliptic equation Δu+un = 0 with u(0) = 1 and u′(0) = 0 on the positive real line, called the Emden–Fowler or Lane–Emden equation. This equation is of great importance in Newtonian astrophysics and the constant n is called the polytropic index.

    By introducing a set of new variables, the Emden–Fowler equation can be written as an autonomous system of two ordinary differential equations which can be analyzed using linear and nonlinear stability analysis. We perform the study of stability by using linear stability analysis, the Jacobi stability analysis (Kosambi–Cartan–Chern-theory) and the Lyapunov function method. Depending on the values of n these different methods yield different results. We identify a parameter range for n where all three methods imply stability.

    AMSC: 34D20, 35B35, 37C75