World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue — Selected Papers from the International Conference on Electrical Engineering and Information Technologies for Rail Transportation (EITRT2017); Guest Editors: Y. Qin, M. An and L. M. JiaNo Access

Multistate Reliability Evaluation of Bogie on High Speed Railway Vehicle Based on the Network Flow Theory

    https://doi.org/10.1142/S0218194018400053Cited by:11 (Source: Crossref)

    Bogie is one of the most major mechanical part of railway train. Its security and reliability are of paramount importance. Since research in this field is still on the early stage, which focus on either mechanical structure without condition or binary coherent systems. A multistate network flow model has been proposed in this paper with consideration of components degradation level and functional interaction between them. Firstly, the structure and function of the bogie for CRH3 were made a detailed introduction. Then transmission paths of three types force on bogie were study to determine the network strcture. Different from other papers, arcs represent the components and nodes are the transitive relation. Arc capacity tends to be confirmed easily with utilization of performance deterioration of elements on bogie involved in force tranferring. Flow rate of each arc depends on both component' health status and the task it undertakes. Furthermore, the minimal paths (MPs) method and the recursive sum of disjoint products (RSDP) with ordering heuristics are used for system reliability calculation; and the relative probability importance of each basic component and system reliability with and without forehead information are given at last. The results show that the network flow model works well on CRH3 bogie, and can support as guidance of bogie system design, daily system operation and predictive maintenance.