World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COSET ENUMERATION FOR CERTAIN INFINITELY PRESENTED GROUPS

    https://doi.org/10.1142/S0218196711006637Cited by:5 (Source: Crossref)

    We describe an algorithm that computes the index of a finitely generated subgroup in a finitely L-presented group provided that this index is finite. This algorithm shows that the subgroup membership problem for finite index subgroups in a finitely L-presented group is decidable. As an application, we consider the low-index subgroups of some self-similar groups including the Grigorchuk group, the twisted twin of the Grigorchuk group, the Grigorchuk super-group, and the Hanoi 3-group.

    AMSC: 20F05, 20F10, 20E07, 20E28, 20-04