World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NIL-ARMENDARIZ RINGS AND UPPER NILRADICALS

    https://doi.org/10.1142/S0218196712500592Cited by:6 (Source: Crossref)

    We continue the study of nil-Armendariz rings, initiated by Antoine, and Armendariz rings. We first examine a kind of ring coproduct constructed by Antoine for which the Armendariz, nil-Armendariz, and weak Armendariz properties are equivalent. Such a ring has an important role in the study of Armendariz ring property and near-related ring properties. We next prove an Antoine's result in relation with the ring coproduct by means of a simpler direct method. In the proof we can observe the concrete shapes of coefficients of zero-dividing polynomials. We next observe the structure of nil-Armendariz rings via the upper nilradicals. It is also shown that a ring R is Armendariz if and only if R is nil-Armendariz if and only if R is weak Armendariz, when R is a von Neumann regular ring.

    AMSC: 16N40, 16S36