World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Inverse monoids and immersions of 2-Complexes

    https://doi.org/10.1142/S0218196715400123Cited by:5 (Source: Crossref)

    It is well known that under mild conditions on a connected topological space 𝒳, connected covers of 𝒳 may be classified via conjugacy classes of subgroups of the fundamental group of 𝒳. In this paper, we extend these results to the study of immersions into two-dimensional CW-complexes. An immersion f : 𝒟 → 𝒞 between CW-complexes is a cellular map such that each point y ∈ 𝒟 has a neighborhood U that is mapped homeomorphically onto f(U) by f. In order to classify immersions into a two-dimensional CW-complex 𝒞, we need to replace the fundamental group of 𝒞 by an appropriate inverse monoid. We show how conjugacy classes of the closed inverse submonoids of this inverse monoid may be used to classify connected immersions into the complex.

    Dedicated to Stuart Margolis, on the occasion of his 60th birthday.

    AMSC: 20M18, 57M20