World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HERSCHEL–BULKLEY FLUIDS: EXISTENCE AND REGULARITY OF STEADY FLOWS

https://doi.org/10.1142/S0218202505000996Cited by:36 (Source: Crossref)

The equations for steady flows of Herschel–Bulkley fluids are considered and the existence of a weak solution is proved for the Dirichlet boundary-value problem. The rheology of such a fluid is defined by a yield stress τ* and a discontinuous constitutive relation between the Cauchy stress and the symmetric part of the velocity gradient. Such a fluid stiffens if its local stresses do not exceed τ*, and it behaves like a non-Newtonian fluid otherwise. We address here a class of nonlinear fluids which includes shear-thinning p-law fluids with 9/5 < p ≤ 2. The flow equations are formulated in the stress-velocity setting (cf. Ref. 25). Our approach is different from that of Duvaut–Lions (cf. Ref. 10) developed for classical Bingham visco-plastic materials. We do not apply the variational inequality but make use of an approximation of the Herschel–Bulkley fluid with a generalized Newtonian fluid with a continuous constitutive law.

AMSC: 76A05, 74D10