World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DYNAMICS OF THE GROUND STATE AND CENTRAL VORTEX STATES IN BOSE–EINSTEIN CONDENSATION

    https://doi.org/10.1142/S021820250500100XCited by:36 (Source: Crossref)

    In this paper, we study dynamics of the ground state and central vortex states in Bose–Einstein condensation (BEC) analytically and numerically. We show how to define the energy of the Thomas–Fermi (TF) approximation, prove that the ground state is a global minimizer of the energy functional over the unit sphere and all excited states are saddle points in linear case, derive a second-order ordinary differential equation (ODE) which shows that time-evolution of the condensate width is a periodic function with/without a perturbation by using the variance identity, prove that the angular momentum expectation is conserved in two dimensions (2D) with a radial symmetric trap and 3D with a cylindrical symmetric trap for any initial data, and study numerically stability of central vortex states as well as interaction between a few central vortices with winding numbers ±1 by a fourth-order time-splitting sine-pseudospectral (TSSP) method. The merit of the numerical method is that it is explicit, unconditionally stable, time reversible and time transverse invariant. Moreover, it conserves the position density, performs spectral accuracy for spatial derivatives and fourth-order accuracy for time derivative, and possesses "optimal" spatial/temporal resolution in the semiclassical regime. Finally we find numerically the critical angular frequency for single vortex cycling from the ground state under a far-blue detuned Gaussian laser stirrer in strong repulsive interaction regime and compare our numerical results with those in the literatures.

    AMSC: 81Q05, 65M70, 65N35, 65N25, 35B40