World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INTEGRODIFFERENTIAL HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO VISCOELASTIC FRICTIONAL CONTACT

    https://doi.org/10.1142/S021820250800267XCited by:45 (Source: Crossref)

    We consider a class of abstract second-order evolutionary inclusions involving a Volterra-type integral term, for which we prove an existence and uniqueness result. The proof is based on arguments of evolutionary inclusions with monotone operators and the Banach fixed point theorem. Next, we apply this result to prove the solvability of a class of second-order integrodifferential hemivariational inequalities and, under an additional assumption, its unique solvability. Then we consider a mathematical model which describes the frictional contact between a deformable body and a foundation. The process is dynamic, the material behavior is described with a viscoelastic constitutive law involving a long memory term and the contact is modelled with subdifferential boundary conditions. We derive the variational formulation of the problem which is of the form of an integrodifferential hemivariational inequality for the displacement field. Then we use our abstract results to prove the existence of a unique weak solution to the frictional contact model.

    AMSC: 47J20, 49J40, 74M15, 74M10, 74H20