A NUMERICAL ANALYSIS OF A REACTION–DIFFUSION SYSTEM MODELING THE DYNAMICS OF GROWTH TUMORS
Abstract
We consider a reaction–diffusion system of 2 × 2 equations modeling the spread of early tumor cells. The existence of weak solutions is ensured by a classical argument of Faedo–Galerkin method. Then, we present a numerical scheme for this model based on a finite volume method. We establish the existence of discrete solutions to this scheme, and we show that it converges to a weak solution. Finally, some numerical simulations are reported with pattern formation examples.