World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A NUMERICAL ANALYSIS OF A REACTION–DIFFUSION SYSTEM MODELING THE DYNAMICS OF GROWTH TUMORS

    https://doi.org/10.1142/S0218202510004428Cited by:4 (Source: Crossref)

    We consider a reaction–diffusion system of 2 × 2 equations modeling the spread of early tumor cells. The existence of weak solutions is ensured by a classical argument of Faedo–Galerkin method. Then, we present a numerical scheme for this model based on a finite volume method. We establish the existence of discrete solutions to this scheme, and we show that it converges to a weak solution. Finally, some numerical simulations are reported with pattern formation examples.

    AMSC: 35K57, 35K55, 92B05