World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Landau theory for ferro-paramagnetic phase transition in finitely-strained viscoelastic magnets

    https://doi.org/10.1142/S0218202524500015Cited by:0 (Source: Crossref)

    The thermodynamic model of viscoelastic deformable magnetic materials at finite strains is formulated in a fully Eulerian way in rates. The Landau theory applied to a ferro-to-paramagnetic phase transition, the gradient theory (due to an exchange energy) for magnetization with general mechanically dependent coefficient, hysteresis in magnetization evolution by the Gilbert equation involving an objective corotational time derivative of magnetization, and the demagnetizing field are considered in the model. The Kelvin–Voigt viscoelastic rheology with a higher-order viscosity (exploiting the concept of multipolar materials) is used, allowing for physically relevant frame-indifferent stored energies and for local invertibility of deformation. The model complies with energy conservation and Clausius–Duhem entropy inequality. An existence and a certain regularity of weak solutions are proved by a Faedo–Galerkin semi-discretization and a suitable regularization.

    Communicated by F. Brezzi

    AMSC: 35Q74, 65M60, 74A30, 74F15, 74N30, 80A20