LADE: Learning Automata Based Differential Evolution
Abstract
Many engineering optimization problems do not standard mathematical techniques, and cannot be solved using exact algorithms. Evolutionary algorithms have been successfully used for solving such optimization problems. Differential evolution is a simple and efficient population-based evolutionary algorithm for global optimization, which has been applied in many real world engineering applications. However, the performance of this algorithm is sensitive to appropriate choice of its parameters as well as its mutation strategy. In this paper, we propose two different underlying classes of learning automata based differential evolution for adaptive selection of crossover probability and mutation strategy in differential evolution. In the first class, genomes of the population use the same mutation strategy and crossover probability. In the second class, each genome of the population adjusts its own mutation strategy and crossover probability parameter separately. The performance of the proposed methods is analyzed on ten benchmark functions from CEC 2005 and one real-life optimization problem. The obtained results show the efficiency of the proposed algorithms for solving real-parameter function optimization problems.
Remember to check out the Most Cited Articles! |
---|
Check out Notable Titles in Artificial Intelligence. |