Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

On the skein theory of dichromatic links and invariants of finite type

    https://doi.org/10.1142/S0218216517500924Cited by:4 (Source: Crossref)

    In [Dichromatic link invariants, Trans. Amer. Math. Soc.321(1) (1990) 197–229], Hoste and Kidwell investigated the skein theory of oriented dichromatic links in S3. They introduced a multi-variable polynomial invariant W. We use special substitutions for some of the parameters of the invariant W to show how to deduce invariants of finite type from W using partial derivatives. Then we consider the 2-component 1-trivial dichromatic links. We study the Vassiliev invariants of the 2-component in the complement of the 1-component, which is equivalent to studying Vassiliev invariants for knots in S1×D2. We give combinatorial formulas for the type-zero and type-one invariants and we connect these invariants to existing invariants such as Aicardi's invariant. This provides us with a topological meaning of the first partial derivative, which is also shown to be universal as a type-one invariant.

    AMSC: 57M27