World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STRUCTURED GROUPS AND LINK-HOMOTOPY

    https://doi.org/10.1142/S0218216593000040Cited by:8 (Source: Crossref)

    We study link-homotopy classes of links in the three sphere using reduced groups endowed with peripheral structures derived from meridian-longitude pairs. Two types of peripheral structures are considered — Milnor’s original version (called “pre-peripheral structures” in Levine’s terminology) and Levine’s refinement (called simply “peripheral structures”). We show here that pre-peripheral structures are not strong enough to classify links up to link-homotopy, and that Levine’s peripheral structures, although strong enough to distinguish those classes not distinguished by pre-peripheral structures, are also in all likelihood not strong enough to distinguish all link-homotopy classes. Following Levine’s classification program, we compare structure-preserving and realizable automorphisms, using an obstruction-theoretic approach suggested by work of Habegger and Lin. We find that these automorphism groups are in general different, so that a more complex program for classification by structured groups is required.