World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LINK HOMOTOPY INVARIANT QUANDLES

    https://doi.org/10.1142/S0218216511008930Cited by:2 (Source: Crossref)

    We consider several approaches to defining a link homotopy version of the fundamental quandle Q(L) of a link L in S3. We first define the reduced fundamental quandle RQ(L) as a quotient of Q(L). We show that RQ(L) is a link homotopy invariant that carries at least as much information as the meridian-preserving isomorphism class of Milnor's reduced group RG(L). We then show that operator reduction, a plausible alternative approach to defining RQ(L), fails to yield a link homotopy invariant. Finally, we give a geometric characterization of RQ(L), and offer a caveat regarding a seemingly simpler approach.

    AMSC: 57M25