World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NATURALNESS IN AN EFFECTIVE FIELD THEORY FOR NEUTRON STAR MATTER

    https://doi.org/10.1142/S0218271804005614Cited by:4 (Source: Crossref)

    High density hadronic matter is studied in a generalized relativistic multi-baryon Lagrangian density mean field approach which contains nonlinear couplings of the σ, ω, ϱ fields. We compare the predictions of our model with estimates obtained within a phenomenological naive dimensional analysis based on the naturalness of the coefficients of the theory. Upon adjusting the model parameters to describe bulk static properties of ordinary nuclear matter, we show that our approach represents a natural modelling of nuclear matter under the extreme conditions of density as the ones found in the interior of neutron stars. Moreover, we show that naturalness play a major role in effective field theory and, in combination with experiment, could represent a relevant criterium to select a model among others in the description of global static properties of neutron stars.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!