Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MULTIVARIATE AFFINE FRACTAL INTERPOLATION

    https://doi.org/10.1142/S0218348X20501364Cited by:8 (Source: Crossref)

    Fractal interpolation functions capture the irregularity of some data very effectively in comparison with the classical interpolants. They yield a new technique for fitting experimental data sampled from real world signals, which are usually difficult to represent using the classical approaches. The affine fractal interpolants constitute a generalization of the broken line interpolation, which appears as a particular case of the linear self-affine functions for specific values of the scale parameters. We study the p convergence of this type of interpolants for 1p< extending in this way the results available in the literature. In the second part, the affine approximants are defined in higher dimensions via product of interpolation spaces, considering rectangular grids in the product intervals. The associate operator of projection is considered. Some properties of the new functions are established and the aforementioned operator on the space of continuous functions defined on a multidimensional compact rectangle is studied.