Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    FRACTAL TRIGONOMETRIC POLYNOMIALS FOR RESTRICTED RANGE APPROXIMATION

    Fractals01 Jun 2016

    One-sided approximation tackles the problem of approximation of a prescribed function by simple traditional functions such as polynomials or trigonometric functions that lie completely above or below it. In this paper, we use the concept of fractal interpolation function (FIF), precisely of fractal trigonometric polynomials, to construct one-sided uniform approximants for some classes of continuous functions.

  • articleNo Access

    MULTIVARIATE AFFINE FRACTAL INTERPOLATION

    Fractals01 Nov 2020

    Fractal interpolation functions capture the irregularity of some data very effectively in comparison with the classical interpolants. They yield a new technique for fitting experimental data sampled from real world signals, which are usually difficult to represent using the classical approaches. The affine fractal interpolants constitute a generalization of the broken line interpolation, which appears as a particular case of the linear self-affine functions for specific values of the scale parameters. We study the p convergence of this type of interpolants for 1p< extending in this way the results available in the literature. In the second part, the affine approximants are defined in higher dimensions via product of interpolation spaces, considering rectangular grids in the product intervals. The associate operator of projection is considered. Some properties of the new functions are established and the aforementioned operator on the space of continuous functions defined on a multidimensional compact rectangle is studied.

  • articleNo Access

    A REVISIT TO STABILITY OF SCHAUDER BASES: FRACTALIZING MULTIVARIATE FABER–SCHAUDER SYSTEM

    Fractals25 Apr 2022

    Let X be a Banach space with a Schauder basis (xm)m=0, and I be the identity operator on X. It is known, at least in essence, that if (Tm)m=0 is a sequence of bounded linear operators on X such that m=0ITm<, then (Tm(xm))m=0 is also a basis. The first part of this work acts as an expository note to formally record the aforementioned stability result. In the second part, we apply this stability result to construct a Schauder basis consisting of bivariate fractal functions for the space of continuous functions defined on a rectangle. To this end, fractal perturbations of the elements in the classical bivariate Faber–Schauder system are formulated using a sequence of bounded linear fractal operators close to the identity operator in accordance with the stability result mentioned above. This illustration, although emphasized only for the bivariate case, can easily be extended to higher dimensions. Further, the perturbation technique used here acts as a companion for a few researches on fractal bases in the univariate setting.

  • articleNo Access

    OCCURRENCE AND NON-APPEARANCE OF SHOCKS IN FRACTAL BURGERS EQUATIONS

    We consider the fractal Burgers equation (that is to say the Burgers equation to which is added a fractional power of the Laplacian) and we prove that, if the power of the Laplacian involved is lower than 1/2, then the equation does not regularize the initial condition: on the contrary to what happens if the power of the Laplacian is greater than 1/2, discontinuities in the initial data can persist in the solution and shocks can develop even for smooth initial data. We also prove that the creation of shocks can occur only for sufficiently "large" initial conditions, by giving a result which states that, for smooth "small" initial data, the solution remains at least Lipschitz continuous.