World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue Section on Fractal AI-Based Analyses and Applications to Complex Systems: Part IIOpen Access

IMPACT OF THE SAME DEGENERATE ADDITIVE NOISE ON A COUPLED SYSTEM OF FRACTIONAL SPACE DIFFUSION EQUATIONS

    https://doi.org/10.1142/S0218348X22400333Cited by:28 (Source: Crossref)

    In this paper, we present a class of stochastic system of fractional space diffusion equations forced by additive noise. Our goal here is to approximate the solutions of this system via a system of ordinary differential equations. Moreover, we study the influence of the same degenerate additive noise on the stability of the solutions of the stochastic system of fractional diffusion equations. We are interested in the systems that have nonlinear polynomial and give applications as Lotka–Volterra system from biology and the Brusselator model for the Belousov–Zhabotinsky chemical reaction from chemistry to illustrate our results.

    References

    • 1. I. R. Epstein and J. A. Pojman , An Introduction to Nonlinear Chemical Dynamics (Oxford University Press, 1998). CrossrefGoogle Scholar
    • 2. K. Maginu , Reaction–Diffusion equation describing morphogenesis I waveform stability of stationary solutions in a one dimensional model, Math. Biosci. 27 (1975) 17–98. CrossrefGoogle Scholar
    • 3. J. Murray , Mathematical Biology, II: Spatial Models and Biomedical Applications (Springer, 2003). CrossrefGoogle Scholar
    • 4. A. M. Turing , The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. B 237 (1952) 5–72. Crossref, Web of ScienceGoogle Scholar
    • 5. A. Esen, T. A. Sulaiman, H. Bulut and H. M. Baskonus , Optical solitons to the space-time fractional (1 + 1)-dimensional coupled nonlinear Schrödinger equation, Optik 167 (2018) 150–156. Crossref, Web of ScienceGoogle Scholar
    • 6. N. H. Sweilam, M. M. A. Hasan and D. Baleanu , New studies for general fractional financial models of awareness and trial advertising decisions, Chaos Solitons Fractals 104 (2017) 772–784. Crossref, Web of ScienceGoogle Scholar
    • 7. D. Baleanu, G. C. Wu and S. D. Zeng , Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos Solitons Fractals 102 (2017) 99–105. Crossref, Web of ScienceGoogle Scholar
    • 8. D. Y. Liu, O. Gibaru, W. Perruquetti and T. M. Laleg-Kirati , Fractional order differentiation by integration and error analysis in noisy environment, IEEE Trans. Autom. Control 60 (2015) 2945–2960. Crossref, Web of ScienceGoogle Scholar
    • 9. R. Caponetto, G. Dongola, L. Fortuna and A. Gallo , New results on the synthesis of FO-PID controllers, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 997–1007. Crossref, Web of ScienceGoogle Scholar
    • 10. A. Prakash, P. Veeresha, D. G. Prakasha and M. A. Goyal , Homotopy technique for fractional order multi-dimensional telegraph equation via Laplace transform, Eur. Phys. J. Plus 134 (2019) 1–18. Crossref, Web of ScienceGoogle Scholar
    • 11. P. Veeresha, D. G. Prakasha and H. M. Baskonus , New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos 29 (2019) 013119. Crossref, Web of ScienceGoogle Scholar
    • 12. W. W. Mohammed , Fast-diffusion limit for reaction–diffusion equations with degenerate multiplicative and additive noise, J. Dyn. Differ. Equ. 33(1) (2021) 577–592. Crossref, Web of ScienceGoogle Scholar
    • 13. W. W. Mohammed, N. Iqbal, A. Ali and M. El-Morshedy , Exact solutions of the stochastic new coupled Konno–Oono equation, Results Phys. 21 (2021) 103830. Crossref, Web of ScienceGoogle Scholar
    • 14. W. W. Mohammed, S. Albosaily, N. Iqbal and M. El-Morshedy, The effect of multiplicative noise on the exact solutions of the stochastic Burgers’ equation, Waves Random Complex Media 1–13, doi:10.1080/17455030.2021.1905914. Google Scholar
    • 15. D. Baleanu, B. Ghanbari, J. H. Asad, A. Jajarmi and H. M. Pirouz , Planar system-masses in an equilateral triangle: Numerical study within fractional calculus, CMES-Comput. Model. Eng. Sci. 124(3) (2020) 953–968. Web of ScienceGoogle Scholar
    • 16. D. Baleanu, S. S. Sajjadi, A. Jajarmi, O. Deferli and J. H. Asad , The fractional dynamics of a linear triatomic molecule, Roman. Rep. Phys. 73(1) (2021) 105. Web of ScienceGoogle Scholar
    • 17. D. Baleanu, S. S. Sajjadi, J. H. Asad, A. Jajarmi and E. Estiri , Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system, Adv. Differ. Equ. 2021 (2021) 157. Crossref, Web of ScienceGoogle Scholar
    • 18. D. Baleanu, S. S. Sajjadi, A. Jajarmi and Ö. Defterli , On a nonlinear dynamical system with both chaotic and non-chaotic behaviours: A new fractional analysis and control, Adv. Differ. Equ. 2021 (2021) 234. Crossref, Web of ScienceGoogle Scholar
    • 19. C. Prévôt and M. A. Röckner , A Concise Course on Stochastic Partial Differential Equations (Springer, 2007). Google Scholar
    • 20. R. Gorenflo and F. Mainardi , Random walk models for space–fractional diffusion processes, Fract. Calc. Appl. Anal. 1 (1998) 167–191. Google Scholar
    • 21. S. G. Samko, A. A. Kilbas and O. I. Marichev , Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, 1993). Google Scholar
    • 22. G. M. Zaslavsky, D. Stevens and H. Weitzner , Self-similar transport in incomplete chaos, Phys. Rev. E 48 (1993) 1683–1694. Crossref, Web of ScienceGoogle Scholar
    • 23. B. A. Carreras, V. E. Lynch and G. M. Zaslavsky , Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models, Phys. Plasmas 8 (2001) 5096–5103. Crossref, Web of ScienceGoogle Scholar
    • 24. M. F. Shlesinger, B. J. West and J. Klafter , Levy dynamics of enhanced diffusion: Application to turbulence, Phys. Rev. Lett. 58 (1987) 1100–1103. Crossref, Web of ScienceGoogle Scholar
    • 25. D. A. Benson, S. W. Wheatcraft and M. M. Meerschaeert , The fractional order governing equations of Levy motion, Water Resour. Res. 36 (2000) 1413–1423. Crossref, Web of ScienceGoogle Scholar
    • 26. M. M. Meerschaert, D. A. Benson and B. Baeumer , Multidimensional advection and fractional dispersion, Phys. Rev. E 59 (1999) 5026–5028. Crossref, Web of ScienceGoogle Scholar
    • 27. N. Iqbal, R. Wu and B. Liu , Pattern formation by super-diffusion in FitzHugh–Nagumo model, Appl. Math. Comput. 313 (2017) 245–258. Crossref, Web of ScienceGoogle Scholar
    • 28. N. Iqbal, R. Wu and W. W. Mohammed , Pattern formation induced by fractional cross-diffusion in a 3-species food chain model with harvesting, Math. Comput. Simul. 188 (2021) 102–119. Crossref, Web of ScienceGoogle Scholar
    • 29. N. Iqbal and Y. Karaca , Complex fractional-order HIV diffusion model based on amplitude equations with turing patterns and turing instability, Fractals 29 (2021) 2140013. Link, Web of ScienceGoogle Scholar
    • 30. W. W. Mohammed and D. Blömker , Fast-diffusion limit with large noise for systems of stochastic reaction–diffusion equations, Stoch. Anal. Appl. 34(6) (2016) 961–978. Crossref, Web of ScienceGoogle Scholar
    • 31. F. Liu, V. Anh, I. Turner and P. Zhuang , Numerical simulation for solute transport in fractal porous media, ANZIAM J. 45 (2004) 461–473. CrossrefGoogle Scholar
    • 32. M. Ilic, F. Liu, I. Turner and V. Anh , Numerical approximation of a fractional-in-space diffusion equation, Fract. Calc. Appl. Anal. 8(3) (2005) 323–341. Google Scholar
    • 33. M. Ilic, F. Liu, I. Turner and V. Anh , Numerical approximation of a fractional-in-space diffusion equation (II) — with nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal. 9(4) (2006) 333–349. Google Scholar
    • 34. S. Shen and F. Liu , Error analysis of an explicit finite difference approximation for space fractional diffusion, ANZIAM J. 46 (2005) 871–887. CrossrefGoogle Scholar
    • 35. G. Da Prato and J. Zabczyk , Stochastic equations in infinite dimensions in Encyclopedia of Mathematics and Its Applications, Vol. 44 (Cambridge University Press, Cambridge, 1992). CrossrefGoogle Scholar
    • 36. D. Blömker and W. W. Mohammed , Amplitude equations for SPDEs with cubic nonlinearities Stochastics, Int. J. Probab. Stoch. Process 85 (2013) 181–215. Crossref, Web of ScienceGoogle Scholar
    • 37. W. Wang, Q. Liu and Z. Jin , Spatiotemporal complexity of a ratio–dependent predator–prey system, Phys. Rev. E 75 (2007) 051913–051922. Crossref, Web of ScienceGoogle Scholar
    • 38. X. Zhang, G. Sun and Z. Jin , Spatial dynamics in a predator–prey model with Beddington–Deangelis functional response, Phys. Rev. E 85 (2012) 021924–021938. Crossref, Web of ScienceGoogle Scholar
    • 39. The MathWorks, MATLAB (R2019b), Natick The MathWorks, Inc. (2019). Google Scholar
    • 40. S. V. Petrovskii and H. A. Malchow , Minimal model of pattern formation in a prey–predator system, Math. Comput. Model. 29 (1999) 49–63. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out New & Notable Titles in Nonlinear Science
    Includes authors Leon O Chua, Bruce J West and more

    "