Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DECODING THE CORRELATION AMONG LEG MUSCLE AND BRAIN ACTIVATIONS IN DIFFERENT BODY MOVEMENTS

    https://doi.org/10.1142/S0218348X22501201Cited by:16 (Source: Crossref)

    We investigated the correlation among brain and leg muscle activations by analyzing Electroencephalogram (EEG) and Electromyogram (EMG) signals in different conditions. Twelve subjects performed four tasks, including (1) quarter turns, (2) U-turns, (3) bypass obstacles, and (4) repeating quarter turns and U-turns two times. Then, we quantified the alterations of the complexity of these signals by computing the fractal dimension and sample entropy. The results showed that EEG and EMG signals in the case of the first task are more complex than the second task, in which they are more complex than the third task. Furthermore, the brain and muscle signals show the least complexity in the case of the fourth task. Moreover, we found strong correlations in the variations of fractal dimension (r=0.9835) and sample entropy (r=0.9168) between EEG and EMG signals in various tasks. Therefore, brain and muscle activations are strongly correlated in different tasks. Similar analyses can be conducted in the case of other organs to decode their correlations.