World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

AFFINE FRACTAL LEAST SQUARES REGRESSION MODEL

    https://doi.org/10.1142/S0218348X22501389Cited by:4 (Source: Crossref)

    This paper develops a method to find fractal curves to fit real data. With a formulation for fractal functions through a type of affine systems of iterative functional equations, we apply the procedure of minimizing the sum of square residuals that is used in the classical linear regression. We develop formulas for approximation and exact fractal functions for various fractal levels and number of equations. This method gives estimates for the parameters of the equations and corresponding functions, namely the fractal coefficients (vertical scaling factors) and directional coefficients. As a consequence, it is possible to upper estimate the Hausdorff dimension of the fitted curve. We provide worked examples, including estimating a fractal curve for a time series real data set of exchange rates between USD and EUR currencies.

    References

    • 1. M. Barnsley, Fractal functions and interpolation, Constr. Approx. 2 (1986) 303–329. Crossref, Web of ScienceGoogle Scholar
    • 2. M. Barnsley and A. N. Harrington, The calculus of fractal interpolation functions, J. Approx. Theory 57(1) (1989) 14–34. Crossref, Web of ScienceGoogle Scholar
    • 3. C. Serpa and J. Buescu, Constructive solutions for systems of iterative functional equations, Constr. Approx. 45 (2017) 273–299. Crossref, Web of ScienceGoogle Scholar
    • 4. M. F. Barnsley, J. E. Hutchinson and O. Stenflo, V-variable fractals: Fractals with partial self similarity, Adv. Math. 218(6) (2008) 2051–2088. Crossref, Web of ScienceGoogle Scholar
    • 5. J. A. T. Machado and D. C. Labora, Fractional fractals, Fract. Calc. Appl. Anal. 23(5) (2020) 1329–1348. Crossref, Web of ScienceGoogle Scholar
    • 6. M. Giona, Fractal calculus on [0,1], Chaos Solitons Fractals 5(6) (1995) 987–1000. Crossref, Web of ScienceGoogle Scholar
    • 7. A. K. Golmankhaneh, A review on application of the local fractal calculus, Numer. Comput. Methods Sci. Eng. 1(2) (2019) 57–66. Google Scholar
    • 8. A. Caetano and S. Lopes, The fractal Dirichlet Laplacian, Rev. Mat. Complut. 24(1) (2011) 189–209. Crossref, Web of ScienceGoogle Scholar
    • 9. H. Porchon, Fractal topology foundations, Topology Appl. 159(14) (2012) 3156–3170. CrossrefGoogle Scholar
    • 10. M. Barnsley, U. Freiberg and D. La Torre, Optimization on fractals and stability, J. Nonlinear Convex Anal. 13(4) (2012) 695–708. Web of ScienceGoogle Scholar
    • 11. A. Cuzzocrea, E. Mumolo and G. M. Grasso, Genetic estimation of iterated function systems for accurate fractal modeling in pattern recognition tools, in Computational Science and Its Applications — ICCSA 2017, Lecture Notes in Computer Science, Vol. 10404, eds. O. Gervasiet al. (Springer, Cham, 2017), pp. 357–371. CrossrefGoogle Scholar
    • 12. G. Mantica and A. Sloan, Chaotic optimization and the construction of fractals: Solution of an inverse problem, Complex Syst. 3 (1989) 37–62. Google Scholar
    • 13. D. S. Mazel and M. H. Hayes, Fractal modeling of time-series data, in Twenty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1989, pp. 182–186. CrossrefGoogle Scholar
    • 14. M. A. Navascués and P. Viswanathan, Energy minimizing associate fractal functions, RACSAM 113 (2019) 1025–1039. Crossref, Web of ScienceGoogle Scholar
    • 15. S. M. A. Partovi and S. Sadeghnejad, Fractal parameters and well-logs investigation using automated well-to-well correlation, Comput. Geosci. 103 (2017) 59–69. Crossref, Web of ScienceGoogle Scholar
    • 16. D. S. Mazel and M. H. Hayes, Using iterated function systems to model discrete sequences, IEEE Trans. Signal Process. 40(7) (1992) 1724–1734. Crossref, Web of ScienceGoogle Scholar
    • 17. D. Withers, Newton’s method for fractal approximation, Constr. Approx. 5 (1989) 151–170. Crossref, Web of ScienceGoogle Scholar
    • 18. M. A. Navascués, Fractal approximation, Complex Anal. Oper. Theory 4 (2010) 953–974. Crossref, Web of ScienceGoogle Scholar
    • 19. M. A. Navascués, Fractal polynomial interpolation, Z. Anal. Anwendungen 24(2) (2005) 401–418. Crossref, Web of ScienceGoogle Scholar
    • 20. M. A. Navascués, Fractal trigonometric approximation, Electron. Trans. Numer. Anal. 20 (2005) 64–74. Web of ScienceGoogle Scholar
    • 21. R. Girgensohn, Functional equations and nowhere differentiable functions, Aequationes Math. 46 (1993) 243–256. Google Scholar
    • 22. C. Serpa and J. Buescu, Explicitly defined fractal interpolation functions with variable parameters, Chaos Solitons Fractals 75 (2015) 76–83. Crossref, Web of ScienceGoogle Scholar
    • 23. C. Serpa and J. Buescu, Fractal and Hausdorff dimensions for systems of iterative functional equations, J. Math. Anal. Appl. 480 (2019) 123429. Crossref, Web of ScienceGoogle Scholar
    • 24. S. Kundu and V. A. Ubhaya, Fitting a least squares piecewise linear continuous curve in two dimensions, Comput. Math. Appl. 41(7–8) (2001) 1033–1041. Crossref, Web of ScienceGoogle Scholar
    • 25. J. Matouv̌ek and J. Nešetřil, Invitation to Discrete Mathematics (Oxford University Press, 1998). CrossrefGoogle Scholar
    • 26. E. Bertel, Quasi-critical fluctuations: A novel state of matter?, J. Nanoparticle Res. 15(5) (2013) 1407. Crossref, Web of ScienceGoogle Scholar
    • 27. S. Boyd and L. Vandenberghe, Convex Optimization, 1st edn (Cambridge University Press, 2004). CrossrefGoogle Scholar
    • 28. C. J. G. Evertsz, Fractal geometry of financial time series, Fractals 3(3) (1995) 609–616. Link, Web of ScienceGoogle Scholar
    • 29. G. R. Richards, A fractal forecasting model for financial time series, J. Forecast. 23 (2004) 587–602. Crossref, Web of ScienceGoogle Scholar
    • 30. M. Bohdalová and M. Greguš, Fractal analysis of forward exchange rates, Acta Polytech. Hungar. 7(4) (2010) 57–69. Web of ScienceGoogle Scholar
    • 31. P. Caraiani and E. Haven, Evidence of multifractality from CEE exchange rates against Euro, Physica A 419 (2015) 395–407. Crossref, Web of ScienceGoogle Scholar
    • 32. M. Dai, S. Shao, J. Gao, Y. Sun and W. Su, Mixed multifractal analysis of crude oil, gold and exchange rate series, Fractals 24(4) (2016) 1650046. Link, Web of ScienceGoogle Scholar
    • 33. V. Mitić, C. Serpa, I. Ilić, M. Mohr and H.-J. Fecht, Fractal nature of advanced Ni-based superalloys solidified on board the international space station, Remote Sens. 13(9) (2021) 1–22. Crossref, Web of ScienceGoogle Scholar
    • 34. C. Serpa and A. Forouharfar, Fractalization of chaos and complexity: Proposition of a new method in the study of complex systems, in Chaos, Complexity and Leadership 2020: Application of Nonlinear Dynamics from Interdisciplinary Perspective, Springer Proceedings in Complexity (Springer, Cham, 2021), pp. 87–105. CrossrefGoogle Scholar
    • 35. C. Serpa, A note on fractal interpolation vs fractal regression, Acad. Lett. (2021) 808, https://doi.org/10.20935/AL808. Google Scholar
    • 36. A.-M. Legendre, Nouvelles Méthodes Pour La Détermination Des Orbites Des Comètes (F. Didot, Paris, 1805). Google Scholar
    Remember to check out the Most Cited Articles!

    Check out New & Notable Titles in Nonlinear Science
    Includes authors Leon O Chua, Bruce J West and more

    "