World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PARALLEL SUBSPACE PROJECTION BEAMFORMING FOR AUTONOMOUS, PASSIVE SONAR SIGNAL PROCESSING

    https://doi.org/10.1142/S0218396X0300181XCited by:2 (Source: Crossref)

    Adaptive techniques can be applied to improve performance of a beamformer in a cluttered environment. The sequential implementation of an adaptive beamformer, for many sensors and over a wide band of frequencies, presents a serious computational challenge. By coupling each transducer node with a microprocessor, in-situ parallel processing applied to an adaptive beamformer on a distributed system can glean advantages in execution speed, fault tolerance, scalability, and cost. In this paper, parallel algorithms for Subspace Projection Beamforming (SPB), using QR decomposition on distributed systems, are introduced for in-situ signal processing. Performance results from parallel and sequential algorithms are presented using a distributed system testbed comprised of a cluster of computers connected by a network. The execution times, parallel efficiencies, and memory requirements of each parallel algorithm are presented and analyzed. The results of these analyses demonstrate that parallel in-situ processing holds the potential to meet the needs of future advanced beamforming algorithms in a scalable fashion.