World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PARAMETER ESTIMATION FOR LINEAR FRACTIONAL STABLE NOISE PROCESS

    https://doi.org/10.1142/S0218126605002246Cited by:1 (Source: Crossref)

    Over the past few years, scaling phenomena involving self-similarity and heavy-tailed distributions have attracted the interest of various researchers in telecommunications and networks. In this paper, we study the linear fractional stable noise (LFSN) which exhibits both long-range dependence and heavy tails property. LFSN can be represented as a linear process with weight coefficients and α-stable random variables. The coefficients of the linear process are determined by a kernel function and depend on five parameters. This paper focuses on estimating two unknown parameters a and b. Based on minimizing square errors, several methods for estimating these two parameters are presented. Detailed tables and graphs have been included in extensive simulations which show the methods are good estimates.