World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE SECURITY OF MICROAGGREGATION WITH INDIVIDUAL RANKING: ANALYTICAL ATTACKS

    https://doi.org/10.1142/S0218488502001594Cited by:22 (Source: Crossref)

    Microaggregation is a statistical disclosure control technique. Raw microdata (i.e. individual records) are grouped into small aggregates prior to publication. With fixed-size groups, each aggregate contains k records to prevent disclosure of individual information. Individual ranking is a usual criterion to reduce multivariate microaggregation to univariate case: the idea is to perform microaggregation independently for each variable in the record. Using distributional assumptions, we show in this paper how to find interval estimates for the original data based on the microaggregated data. Such intervals can be considerably narrower than intervals resulting from subtraction of means, and can be useful to detect lack of security in a microaggregated data set. Analytical arguments given in this paper confirm recent empirical results about the unsafety of individual ranking microaggregation.

    Work partly funded by the European Union under project "CASC"IST-2000-25069.