World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

APPLICATION AND ROBUSTNESS DESIGN OF FUZZY CONTROLLER FOR RESONANT AND CHAOTIC SYSTEMS WITH EXTERNAL DISTURBANCE

    https://doi.org/10.1142/S0218488505003461Cited by:50 (Source: Crossref)

    A robustness design of fuzzy control via model-based approach is proposed in this paper to overcome the effect of approximation error between nonlinear system and Takagi-Sugeno (T-S) fuzzy model. T-S fuzz model is used to model the resonant and chaotic systems and the parallel distributed compensation (PDC) is employed to determine structures of fuzzy controllers. Linear matrix inequality (LMI) based design problems are utilized to find common definite matrices P and feedback gains K satisfying stability conditions derived in terms of Lyapunov direct method. Finally, the effectiveness and the feasibility of the proposed controller design method is demonstrated through numerical simulations on the chaotic and resonant systems.

    The authors wish to express sincere gratitude to Prof. B. Bouchon-Meunier for her valuable help, the Associate Editor and the anonymous reviewers for their constructive comments and helpful suggestions which lead to substantial improvements of this paper.