World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FUZZY/PROBABILITY ~ FRACTAL/SMOOTH

    https://doi.org/10.1142/S0218488599000313Cited by:7 (Source: Crossref)

    Many applications of probability theory are based on the assumption that, as the number of cases increase, the relative frequency of cases with a certain property tends to a number – probability that this property is true. L. Zadeh has shown that in many real-life situations, the frequency oscillates and does not converge at all. It is very difficult to describe such situations by using methods from traditional probability theory. Fuzzy logic is not based on any convergence assumptions and therefore, provides a natural description of such situations. However, a natural next question arises: how can we describe this oscillating behavior? Since we cannot describe it by using a single parameter (such as probability), we need to use a multi-D formalism. In this paper, we describe an optimal formalism for describing such oscillations, and show that it complements traditional probability techniques in the same way as fractals complement smooth curves and surfaces.