World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FBMC-based dispersion compensation using artificial neural network equalization for long reach-passive optical network

    https://doi.org/10.1142/S021969131941011XCited by:5 (Source: Crossref)
    This article is part of the issue:

    This paper presents a Filter Bank Multicarrier (FBMC), a viable waveform candidate for fifth generation (5G) communications using Staggered-Modulated Multitone (SMT). FBMC is preferred in optical communication because of its ability to work without Cyclic Prefix (CP). In any case, the operation of FBMC in optical access systems with Artificial Neural Networks (ANNs) has not been broadly explored either downstream or upstream. This work presents an advanced Nonlinear Feed-Forward Equalizer (NFFE) that makes use of multilayer ANN for dispersion compensation. ANN is trained to act as a filter with an extensive equalizer training which has the ability to mitigate dispersion and increase the performance of the system. The simulation work is used to study the performance of intensity modulated FBMC system with direct detection in Long Reach-Passive Optical Networks (LR-PONs).The transmission data rate is varied between 8 and 10Gbps with the optical fiber length from 30 to 90km of Standard Single Mode Fiber (SSMF). The obtained result suggests that FBMC system with ANN-NFFE equalizer fundamentally builds the resilience to the Chromatic Dispersion (CD) distortion, and a CP-less transmission is possible upto 90km.

    AMSC: 90B18, 68T05