THE EFFECT OF COPPER ION ON THE FILM FORMATION RATE OF TITANIUM-BASED NANOCERAMIC LAYER ON A MILD STEEL SURFACE
Abstract
In this study, the effect of copper ion (Cu2+) was investigated on the film formation rate of Ti-based nanoceramic conversion layer on a ST12 type mild steel. At the first step, the film formation properties of the Ti conversion layer were characterized using DC polarization technique and FE-SEM micrographs. In the next step, concentration of Cu ion was optimized in the Ti solution bath, and finally, the rate of Ti ion (Ti4+) consumption in the conversion solution bath, with and without Cu ion, was detected by spectrophotometric technique using a dye-metal indicator. It was revealed that the addition of Cu ion to the Ti solution bath could increase the precipitation rate of Ti-based compounds on the mild steel substrate, leading to increment of film formation rate of the conversion layer.