Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MULTI-RESPONSE OPTIMIZATION OF END-MILLING PARAMETERS FOR INCONEL 625 USING TAGUCHI COUPLED WITH TOPSIS

    https://doi.org/10.1142/S0218625X21500967Cited by:5 (Source: Crossref)

    Using Taguchi design of experiments (DoE), experiments were conducted with 3 factors and 3 levels. The factors were the depth of cut, spindle speed, and feed. The responses were surface roughness, flank wear, material removal rate, and spindle vibration along x (Vx), y (Vy), and z (Vz) axis. To convert the multi-response optimization problem into a single response optimization problem, the technique for order of preference by similarity to ideal solution (TOPSIS) was applied. The S/N of the closeness coefficients from TOPSIS was calculated and optimum machining conditions were obtained. Further, analysis of variance (ANOVA) was performed to verify which input parameter significantly affects the output responses. From TOPSIS optimization, the responses like surface roughness and flank wear were decreased by 0.99% and 2.55%. The vibration in x, y, and z-axis decreased by 3.84%, 16.87% and 12.48% respectively. This optimization significantly enhances the machining characteristics.