Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    EXPERIMENTAL INVESTIGATION OF COCONUT OIL WITH NANOBORIC ACID DURING MILLING OF INCONEL 625 USING TAGUCHI-GREY RELATIONAL ANALYSIS

    This study is based on Taguchi’s design of experiments along with grey relational analysis (GRA) to optimize the milling parameters to minimize surface roughness, tool wear, and vibration during machining of Inconel-625 while using coconut oil as cutting fluid (CF). The experiments were conducted based on Taguchi’s L9 orthogonal array (OA). Taguchi’s S/N was used for identifying the optimal cutting parameter for individual response. Analysis of variance (ANOVA) was employed to analyze the outcome of individual parameters on responses. The surface roughness was mostly influenced by feed. Flank wear was influenced by speed and the vibration was mostly influenced by the depth of cut as well as speed. The multi-response optimization was done through GRA. From GRA, the optimal parameters were identified. Further, nanoboric acid of 0.5 and 0.9wt.% was mixed with coconut oil to enhance lubricant properties. Coconut oil with 0.5wt.% of nanoboric acid minimizes the surface roughness and flank wear by 3.92% and 6.28% and reduces the vibration in the z-axis by 4.85%. The coconut oil with 0.5wt.% of nanoboric acid performs better than coconut oil with 0.9wt.% of nano boric acid and base oil.

  • articleNo Access

    MULTI-RESPONSE OPTIMIZATION OF END-MILLING PARAMETERS FOR INCONEL 625 USING TAGUCHI COUPLED WITH TOPSIS

    Using Taguchi design of experiments (DoE), experiments were conducted with 3 factors and 3 levels. The factors were the depth of cut, spindle speed, and feed. The responses were surface roughness, flank wear, material removal rate, and spindle vibration along x (Vx), y (Vy), and z (Vz) axis. To convert the multi-response optimization problem into a single response optimization problem, the technique for order of preference by similarity to ideal solution (TOPSIS) was applied. The S/N of the closeness coefficients from TOPSIS was calculated and optimum machining conditions were obtained. Further, analysis of variance (ANOVA) was performed to verify which input parameter significantly affects the output responses. From TOPSIS optimization, the responses like surface roughness and flank wear were decreased by 0.99% and 2.55%. The vibration in x, y, and z-axis decreased by 3.84%, 16.87% and 12.48% respectively. This optimization significantly enhances the machining characteristics.

  • articleNo Access

    AN INVESTIGATION ON MICROSTRUCTURES, MECHANICAL AND WEAR BEHAVIOR OF LASER-CLADDED INCONEL 625 AND NIMONIC 90 OVER NIMONIC 90 SUBSTRATE

    The wrought nickel–chromium–cobalt Nimonic 90 alloy is widely used in turbine blades, piston rings and forged tools due to their high stress-rupture strength and creep resistance up to 920C. The application components showed unavoidable wear behaviors at high loads due to the reduced resistance of the components. Hence, in order to increase the wear resistance of this alloy, Inconel 625 and Nimonic 90 particle depositions have been carried out on Nimonic 90 substrate through the laser-cladding techniques to study the microstructure, mechanical and tribological behaviors of alloys. The phases, microstructure and microhardness of the claddings were investigated by X-ray diffractometry (XRD), Transmission electron microscopy (TEM), Scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS) and hardness test, respectively. Results showed that the mean thickness of the interfacial layer of Inconel 625 and Nimonic 90 was 18.51 ± 4 μm and 90.68 ± 7 μm, respectively. The microstructure of the cladding surfaces resulted in dendritic and interdendritic structures. An overall analysis found that the gamma-Ni and hard laves phases were presented in Inconel 625 and Nimonic 90 clad surfaces, respectively. Nimonic 90 clad surface had a high hardness and wear resistance compared with Inconel 625 clad surface and substrate due to the present hard laves phase. Besides, the roughness of the Nimonic 90 clad surface was lower compared with the Inconel 625 clad surface and substrate.

  • articleNo Access

    Tool Condition Monitoring While Using Vegetable Based Cutting Fluids During Milling of Inconel 625

    This investigation has designed a tool condition monitoring system (TCM) while milling of Inconel 625 based on sound and vibration signatures. The experiments were carried out based on response surface methodology (RSM) central composite design, design of experiments. The process parameters such as speed, feed, depth of cut and vegetable-based cutting fluids were optimized based on surface roughness, flank wear. It was found that the sound pressure and vibration signatures have the direct relation with flank wear. The statistical features like root mean square, skewness, kurtosis and mean values were extracted from the experimental data. From the designed NN estimator, the cutting tool flank wear was predicted with the mean square error (MSE) of 0.084212.

  • articleNo Access

    Investigations, Processing and Analysis of High Temperature Resistant Nickel-Based Alloy with Die-Sinking Electric Discharge Machining Process

    Inconel 625 possesses excellent mechanical, chemical, and physical properties thus commonly used in different sectors. Due to its wide use, it becomes important to investigate its mechanical characteristics under die-sinking EDM. In this research, an empirical model is constructed to investigate the optimal parametric setting of die-sinking EDM. The experimental runs are developed using a Taguchi design. It has been observed from the analysis that peak current followed by pulse on time is the most significant parameter for MRR followed by pulse on time. However, the SR gives significant results on the pulse on time. The confirmatory test is conducted to validate the efficacy of the proposed method.