World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

RADIATION-INDUCED SURFACE MIGRATION OF TUNGSTEN: CHANNELING ALONG ATOMIC STEPS

    https://doi.org/10.1142/S0218625X22500603Cited by:0 (Source: Crossref)

    The interaction of accelerated helium atoms with the atomic-smooth surface of tun+gsten single crystals was investigated using the low-temperature field-ion microscope, equipped with the source of helium atoms with an energy of 5 keV together with the techniques of molecular dynamics. It was observed the effect of the surface channeling of fast atoms of a target along the surface steps which occurs as a result of the collision cascade induced by the incident projectile. A substantial part of these displaced atoms in the target gains momentum oriented along the < 111 > close-packed crystallographic directions. The fine morphology of the trajectory of an excited tungsten atom reveals the transverse oscillations of the W atom normally to the < 111 > surface atomic step. The rate of the kinetic energy loss during the surface channeling of fast tungsten atoms does not exceed 0.4 eV/Å. This provides relatively large displaced surface atom ranges along the close-packed atomic steps. The found out results can be regarded as a special case of the correlation mechanism of the radiation-induced surface mass transfer.