World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ANALYTICAL PATH-INTEGRAL PRICING OF DETERMINISTIC MOVING-BARRIER OPTIONS UNDER NON-GAUSSIAN DISTRIBUTIONS

    https://doi.org/10.1142/S0219024920500053Cited by:1 (Source: Crossref)

    In this work, we present an analytical model, based on the path-integral formalism of statistical mechanics, for pricing options using first-passage time problems involving both fixed and deterministically moving absorbing barriers under possibly non-Gaussian distributions of the underlying object. We adapt to our problem a model originally proposed by De Simone et al. (2011) to describe the formation of galaxies in the universe, which uses cumulant expansions in terms of the Gaussian distribution, and we generalize it to take into account drift and cumulants of orders higher than three. From the probability density function, we obtain an analytical pricing model, not only for vanilla options (thus removing the need of volatility smile inherent to the Black & Scholes (1973) model), but also for fixed or deterministically moving barrier options. Market prices of vanilla options are used to calibrate the model, and barrier option pricing arising from the model is compared to the price resulted from the relative entropy model.