World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INVARIANT LINEARIZATION CRITERIA FOR SYSTEMS OF CUBICALLY NONLINEAR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

    https://doi.org/10.1142/S1402925109000236Cited by:24 (Source: Crossref)

    Invariant linearization criteria for square systems of second-order quadratically nonlinear ordinary differential equations (ODEs) that can be represented as geodesic equations are extended to square systems of ODEs cubically nonlinear in the first derivatives. It is shown that there are two branches for the linearization problem via point transformations for an arbitrary system of second-order ODEs and its reduction to the simplest system. One is when the system is at most cubic in the first derivatives. One obtains the equivalent of the Lie conditions for such systems. We explicitly solve this branch of the linearization problem by point transformations in the case of a square system of two second-order ODEs. Necessary and sufficient conditions for linearization to the simplest system by means of point transformations are given in terms of coefficient functions of the system of two second-order ODEs cubically nonlinear in the first derivatives. A consequence of our geometric approach of projection is a rederivation of Lie's linearization conditions for a single second-order ODE and sheds light on more recent results for them. In particular we show here how one can construct point transformations for reduction to the simplest linear equation by going to the higher space and just utilizing the coefficients of the original ODE. We also obtain invariant criteria for the reduction of a linear square system to the simplest system. Moreover these results contain the quadratic case as a special case. Examples are given to illustrate our results.