World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NONCOMMUTATIVE BROWNIAN MOTIONS ASSOCIATED WITH KESTEN DISTRIBUTIONS AND RELATED POISSON PROCESSES

    https://doi.org/10.1142/S0219025708003154Cited by:7 (Source: Crossref)

    We introduce and study a noncommutative two-parameter family of noncommutative Brownian motions in the free Fock space. They are associated with Kesten laws and give a continuous interpolation between Brownian motions in free probability and monotone probability. The combinatorics of our model is based on ordered non-crossing partitions, in which to each such partition P we assign the weight w(P) = pe(P)qe'(P), where e(P) and e'(P) are, respectively, the numbers of disorders and orders in P related to the natural partial order on the set of blocks of P implemented by the relation of being inner or outer. In particular, we obtain a simple relation between Delaney's numbers (related to inner blocks in non-crossing partitions) and generalized Euler's numbers (related to orders and disorders in ordered non-crossing partitions). An important feature of our interpolation is that the mixed moments of the corresponding creation and annihilation processes also reproduce their monotone and free counterparts, which does not take place in other interpolations. The same combinatorics is used to construct an interpolation between free and monotone Poisson processes.

    AMSC: 46L53, 46L54, 60F05