World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

UNITARY REPRESENTATIONS OF THE WITT AND sl(2, ℝ)-ALGEBRAS THROUGH RENORMALIZED POWERS OF THE QUANTUM PASCAL WHITE NOISE

    https://doi.org/10.1142/S0219025708003208Cited by:5 (Source: Crossref)

    By using an appropriate space of distributions, , we derive the chaos decomposition property of the Hilbert space of quadratic integrable functionals with respect to the Pascal white noise measure ΛNB. The constructed decomposition is used to define a nuclear triple of test and generalized functions, where θ is a Young function satisfying some suitable conditions. A general characterization theorems are proven for the Pascal white noise distributions, white noise test functions and white noise operators in terms of analytical functions with growth condition of exponential type. By using appropriate renormalization procedure, we obtain the representation of the square of white noise obtained by Accardi–Franz–Skeide in Ref. 5. Finally, we investigate the main aim of this paper which is to give unitary equivalent representations of the Witt algebra in the basis of Pascal white noise theory.

    AMSC: primary: 60J65, secondary: 60J45, secondary: 60J51, secondary: 60H40