World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A 570-630 GHz FREQUENCY DOMAIN TERAHERTZ SPECTROSCOPY SYSTEM BASED ON A BROADBAND QUASI-OPTICAL ZERO BIAS SCHOTTKY DIODE DETECTOR

    https://doi.org/10.1142/S0129156411006921Cited by:15 (Source: Crossref)

    We report a room temperature 570-630 GHz frequency domain terahertz (THz) spectroscopy system developed on the basis of a broadband quasi-optical zero bias Schottky diode detector. The detector is designed to cover the frequency range of 100 GHz to nearly 900 GHz. A responsivity of 300-1000 V/W has been measured, and the noise equivalent power (NEP) is estimated to be 5-20 pW/√Hz based on the measurements of similar detectors. For a prototype demonstration, the frequency domain THz spectroscopy system was operated within the region of 570-630 GHz using a VDI (Virginia Diodes, Inc.) frequency extension module (FEM) to provide the THz radiation. Mylar thin films with different thicknesses and THz metal mesh filters have been measured using this system, demonstrating a measurement accuracy of ~2%. This system has been applied to measure biomolecules in liquid-phase, and nano-material samples in solid-phase. Initial results and discussion are presented.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas