World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Empirical Performance of the Constant Elasticity Variance Option Pricing Model

    https://doi.org/10.1142/S0219091509001605Cited by:27 (Source: Crossref)

    In this essay, we empirically test the Constant–Elasticity-of-Variance (CEV) option pricing model by Cox (1975, 1996) and Cox and Ross (1976), and compare the performances of the CEV and alternative option pricing models, mainly the stochastic volatility model, in terms of European option pricing and cost-accuracy based analysis of their numerical procedures.

    In European-style option pricing, we have tested the empirical pricing performance of the CEV model and compared the results with those by Bakshi et al. (1997). The CEV model, introducing only one more parameter compared with Black-Scholes formula, improves the performance notably in all of the tests of in-sample, out-of-sample and the stability of implied volatility. Furthermore, with a much simpler model, the CEV model can still perform better than the stochastic volatility model in short term and out-of-the-money categories. When applied to American option pricing, high-dimensional lattice models are prohibitively expensive. Our numerical experiments clearly show that the CEV model performs much better in terms of the speed of convergence to its closed form solution, while the implementation cost of the stochastic volatility model is too high and practically infeasible for empirical work.

    In summary, with a much less implementation cost and faster computational speed, the CEV option pricing model could be a better candidate than more complex option pricing models, especially when one wants to apply the CEV process for pricing more complicated path-dependent options or credit risk models.