Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Alternative Formulas to Compute Implied Standard Deviation

    We assume that the call option's value is correctly priced by Black and Scholes' option pricing model in this paper. This paper derives an exact closed-form solution for implied standard deviation under the condition that the underlying asset price equals the present value of the exercise price. The exact closed-form solution provides the true implied standard deviation and has no estimate error. This paper also develops three alternative formulas to estimate the implied standard deviation if this condition is violated. Application of the Taylor expansion on a single call option value derives the first formula. The accuracy of this formula depends on the deviation between the underlying asset price and the present value of the exercise price. Use of the Taylor formula on two call option prices with different exercise prices is used to develop the second formula, which can be used even though the underlying asset price deviates significantly from the present value of the exercise price. Extension of the second formula's approach to third options value derives the third formula. A merit of the third formula is to circumvent a required parameter used in the second formula. Simulations demonstrate that the implied standard deviations calculated by the second and third formulas provide accurate estimates of the true implied standard deviations.

  • articleNo Access

    Empirical Performance of the Constant Elasticity Variance Option Pricing Model

    In this essay, we empirically test the Constant–Elasticity-of-Variance (CEV) option pricing model by Cox (1975, 1996) and Cox and Ross (1976), and compare the performances of the CEV and alternative option pricing models, mainly the stochastic volatility model, in terms of European option pricing and cost-accuracy based analysis of their numerical procedures.

    In European-style option pricing, we have tested the empirical pricing performance of the CEV model and compared the results with those by Bakshi et al. (1997). The CEV model, introducing only one more parameter compared with Black-Scholes formula, improves the performance notably in all of the tests of in-sample, out-of-sample and the stability of implied volatility. Furthermore, with a much simpler model, the CEV model can still perform better than the stochastic volatility model in short term and out-of-the-money categories. When applied to American option pricing, high-dimensional lattice models are prohibitively expensive. Our numerical experiments clearly show that the CEV model performs much better in terms of the speed of convergence to its closed form solution, while the implementation cost of the stochastic volatility model is too high and practically infeasible for empirical work.

    In summary, with a much less implementation cost and faster computational speed, the CEV option pricing model could be a better candidate than more complex option pricing models, especially when one wants to apply the CEV process for pricing more complicated path-dependent options or credit risk models.

  • chapterNo Access

    Chapter 51: Empirical Performance of the Constant Elasticity Variance Option Pricing Model

    In this chapter, we empirically test the Constant–Elasticity-of-variance (CEV) option pricing model by Cox (1975, 1996) and Cox and Ross (1976), and compare the performances of the CEV and alternative option pricing models, mainly the stochastic volatility model, in terms of European option pricing and cost-accuracy-based analysis of their numerical procedures. In European-style option pricing, we have tested the empirical pricing performance of the CEV model and compared the results with those by Bakshi et al. (1997). The CEV model, introducing only one more parameter compared with Black–Scholes formula, improves the performance notably in all of the tests of in-sample, out-of-sample and the stability of implied volatility. Furthermore, with a much simpler model, the CEV model can still perform better than the stochastic volatility model in short-term and out-of-the-money categories. When applied to American option pricing, high-dimensional lattice models are prohibitively expensive. Our numerical experiments clearly show that the CEV model performs much better in terms of the speed of convergence to its closed-form solution, while the implementation cost of the stochastic volatility model is too high and practically infeasible for empirical work. In summary, with a much less implementation cost and faster computational speed, the CEV option pricing model could be a better candidate than more complex option pricing models, especially when one wants to apply the CEV process for pricing more complicated path-dependent options or credit risk models.

  • chapterNo Access

    Chapter 86: Empirical Performance of the Constant Elasticity Variance Option Pricing Model

    In this essay, we empirically test the Constant–Elasticity-of-Variance (CEV) option pricing model by Cox (1975, 1996) and Cox and Ross (1976), and compare the performances of the CEV and alternative option pricing models, mainly the stochastic volatility model, in terms of European option pricing and cost-accuracy based analysis of their numerical procedures.

    In European-style option pricing, we have tested the empirical pricing performance of the CEV model and compared the results with those by Bakshi, Cao and Chen (1997). The CEV model, introducing only one more parameter compared with Black-Scholes formula, improves the performance notably in all of the tests of in-sample, out-of-sample and the stability of implied volatility. Furthermore, with a much simpler model, the CEV model can still perform better than the stochastic volatility model in short term and out-of-the-money categories. When applied to American option pricing, high-dimensional lattice models are prohibitively expensive. Our numerical experiments clearly show that the CEV model performs much better in terms of the speed of convergence to its closed form solution, while the implementation cost of the stochastic volatility model is too high and practically infeasible for empirical work.

    In summary, with a much less implementation cost and faster computational speed, the CEV option pricing model could be a better candidate than more complex option pricing models, especially when one wants to apply the CEV process for pricing more complicated path-dependent options or credit risk models.

  • chapterNo Access

    RECONSTRUCTING THE UNKNOWN LOCAL VOLATILITY FUNCTION

    Using market European option prices, a method for computing a smooth local volatility function in a 1-factor continuous diffusion model is proposed. Smoothness is introduced to facilitate accurate approximation of the local volatility function from a finite set of observation data. Assuming that the underlying indeed follows a 1-factor model, it is emphasized that accurately approximating the local volatility function prescribing the 1-factor model is crucial in hedging even simple European options, and pricing exotic options. A spline functional approach is used: the local volatility function is represented by a spline whose values at chosen knots are determined by solving a constrained nonlinear optimization problem. The optimization formulation is amenable to various option evaluation methods; a partial differential equation implementation is discussed. Using a synthetic European call option example, we illustrate the capability of the proposed method in reconstructing the unknown local volatility function. Accuracy of pricing and hedging is also illustrated. Moreover, it is demonstrated that, using different implied volatilities for options with different strikes/maturities can produce erroneous hedge factors if the underlying follows a 1-factor model. In addition, real market European call option data on the S&P 500 stock index is used to compute the local volatility function; stability of the approach is demonstrated.

  • chapterNo Access

    The Normal and Lognormal Distributions

      The following sections are included:

      • INTRODUCTION
      • PROBABILITY DISTRIBUTIONS FOR CONTINUOUS RANDOM VARIABLES
        • Continuous Random Variables
        • Probability Distribution Functions for Discrete and Continuous Random Variables
      • THE NORMAL AND STANDARD NORMAL DISTRIBUTIONS
        • The Normal Distribution
        • Areas Under the Normal Curve
        • How to Use the Normal Area Table
      • THE LOGNORMAL DISTRIBUTION AND ITS RELATIONSHIP TO THE NORMAL DISTRIBUTION (Optional)6
        • The Lognormal Distribution
        • Mean and Variance of Lognormal Distribution
      • THE NORMAL DISTRIBUTION AS AN APPROXIMATION TO THE BINOMIAL AND POISSON DISTRIBUTIONS
        • Normal Approximation to the Binomial Distribution
        • Normal Approximation to the Poisson Distribution
      • BUSINESS APPLICATIONS
        • Analyzing Earnings per Share and Rates of Return
        • Cost-Volume-Profit Analysis Under Uncertainty: The Normal Versus the Lognormal Approach
        • Investment Decision Making Under Uncertainty
        • Determination of Commercial Lending Rates13
      • Summary
      • Appendix 7A Mean and Variance for Continuous Random Variables
        • Areas Under Continuous Probability Density Function
        • Mean of Discrete and Continuous Random Variables
        • Variance for Discrete and Continuous Random Variables
      • Appendix 7B Cumulative Normal Distribution Function and the Option Pricing Model
      • Appendix 7C Lognormal Distribution Approach to Derive Option Pricing Model
        • Excel Program for Calculating Black–Scholes Call and Put Option Models
      • Questions and Problems