Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We assume that the call option's value is correctly priced by Black and Scholes' option pricing model in this paper. This paper derives an exact closed-form solution for implied standard deviation under the condition that the underlying asset price equals the present value of the exercise price. The exact closed-form solution provides the true implied standard deviation and has no estimate error. This paper also develops three alternative formulas to estimate the implied standard deviation if this condition is violated. Application of the Taylor expansion on a single call option value derives the first formula. The accuracy of this formula depends on the deviation between the underlying asset price and the present value of the exercise price. Use of the Taylor formula on two call option prices with different exercise prices is used to develop the second formula, which can be used even though the underlying asset price deviates significantly from the present value of the exercise price. Extension of the second formula's approach to third options value derives the third formula. A merit of the third formula is to circumvent a required parameter used in the second formula. Simulations demonstrate that the implied standard deviations calculated by the second and third formulas provide accurate estimates of the true implied standard deviations.
In this essay, we empirically test the Constant–Elasticity-of-Variance (CEV) option pricing model by Cox (1975, 1996) and Cox and Ross (1976), and compare the performances of the CEV and alternative option pricing models, mainly the stochastic volatility model, in terms of European option pricing and cost-accuracy based analysis of their numerical procedures.
In European-style option pricing, we have tested the empirical pricing performance of the CEV model and compared the results with those by Bakshi et al. (1997). The CEV model, introducing only one more parameter compared with Black-Scholes formula, improves the performance notably in all of the tests of in-sample, out-of-sample and the stability of implied volatility. Furthermore, with a much simpler model, the CEV model can still perform better than the stochastic volatility model in short term and out-of-the-money categories. When applied to American option pricing, high-dimensional lattice models are prohibitively expensive. Our numerical experiments clearly show that the CEV model performs much better in terms of the speed of convergence to its closed form solution, while the implementation cost of the stochastic volatility model is too high and practically infeasible for empirical work.
In summary, with a much less implementation cost and faster computational speed, the CEV option pricing model could be a better candidate than more complex option pricing models, especially when one wants to apply the CEV process for pricing more complicated path-dependent options or credit risk models.
In this chapter, we empirically test the Constant–Elasticity-of-variance (CEV) option pricing model by Cox (1975, 1996) and Cox and Ross (1976), and compare the performances of the CEV and alternative option pricing models, mainly the stochastic volatility model, in terms of European option pricing and cost-accuracy-based analysis of their numerical procedures. In European-style option pricing, we have tested the empirical pricing performance of the CEV model and compared the results with those by Bakshi et al. (1997). The CEV model, introducing only one more parameter compared with Black–Scholes formula, improves the performance notably in all of the tests of in-sample, out-of-sample and the stability of implied volatility. Furthermore, with a much simpler model, the CEV model can still perform better than the stochastic volatility model in short-term and out-of-the-money categories. When applied to American option pricing, high-dimensional lattice models are prohibitively expensive. Our numerical experiments clearly show that the CEV model performs much better in terms of the speed of convergence to its closed-form solution, while the implementation cost of the stochastic volatility model is too high and practically infeasible for empirical work. In summary, with a much less implementation cost and faster computational speed, the CEV option pricing model could be a better candidate than more complex option pricing models, especially when one wants to apply the CEV process for pricing more complicated path-dependent options or credit risk models.
In this essay, we empirically test the Constant–Elasticity-of-Variance (CEV) option pricing model by Cox (1975, 1996) and Cox and Ross (1976), and compare the performances of the CEV and alternative option pricing models, mainly the stochastic volatility model, in terms of European option pricing and cost-accuracy based analysis of their numerical procedures.
In European-style option pricing, we have tested the empirical pricing performance of the CEV model and compared the results with those by Bakshi, Cao and Chen (1997). The CEV model, introducing only one more parameter compared with Black-Scholes formula, improves the performance notably in all of the tests of in-sample, out-of-sample and the stability of implied volatility. Furthermore, with a much simpler model, the CEV model can still perform better than the stochastic volatility model in short term and out-of-the-money categories. When applied to American option pricing, high-dimensional lattice models are prohibitively expensive. Our numerical experiments clearly show that the CEV model performs much better in terms of the speed of convergence to its closed form solution, while the implementation cost of the stochastic volatility model is too high and practically infeasible for empirical work.
In summary, with a much less implementation cost and faster computational speed, the CEV option pricing model could be a better candidate than more complex option pricing models, especially when one wants to apply the CEV process for pricing more complicated path-dependent options or credit risk models.
Using market European option prices, a method for computing a smooth local volatility function in a 1-factor continuous diffusion model is proposed. Smoothness is introduced to facilitate accurate approximation of the local volatility function from a finite set of observation data. Assuming that the underlying indeed follows a 1-factor model, it is emphasized that accurately approximating the local volatility function prescribing the 1-factor model is crucial in hedging even simple European options, and pricing exotic options. A spline functional approach is used: the local volatility function is represented by a spline whose values at chosen knots are determined by solving a constrained nonlinear optimization problem. The optimization formulation is amenable to various option evaluation methods; a partial differential equation implementation is discussed. Using a synthetic European call option example, we illustrate the capability of the proposed method in reconstructing the unknown local volatility function. Accuracy of pricing and hedging is also illustrated. Moreover, it is demonstrated that, using different implied volatilities for options with different strikes/maturities can produce erroneous hedge factors if the underlying follows a 1-factor model. In addition, real market European call option data on the S&P 500 stock index is used to compute the local volatility function; stability of the approach is demonstrated.
The following sections are included: