World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FAULT-TOLERANT HAMILTONIAN LACEABILITY AND FAULT-TOLERANT CONDITIONAL HAMILTONIAN FOR BIPARTITE HYPERCUBE-LIKE NETWORKS

    https://doi.org/10.1142/S0219265909002558Cited by:5 (Source: Crossref)

    A bipartite graph G is hamiltonian laceable if there is a hamiltonian path between any two vertices of G from distinct vertex bipartite sets. A bipartite graph G is k-edge fault-tolerant hamiltonian laceable if G - F is hamiltonian laceable for every F ⊆ E(G) with |F| ≤ k. A graph G is k-edge fault-tolerant conditional hamiltonian if G - F is hamiltonian for every F ⊆ E(G) with |F| ≤ k and δ(G - F) ≥ 2. Let G0 = (V0, E0) and G1 = (V1, E1) be two disjoint graphs with |V0| = |V1|. Let Er = {(v,ɸ(v)) | v ϵ V0,ɸ(v) ϵ V1, and ɸ: V0 → V1 is a bijection}. Let G = G0 ⊕ G1 = (V0 ⋃ V1, E0 ⋃ E1 ⋃ Er). The set of n-dimensional hypercube-like graphHn is defined recursively as (a) H1 = K2, K2 is the complete graph with two vertices, and (b) if G0 and G1 are in Hn, then G = G0 ⊕ G1 is in Hn+1. Let Bn be the set of graphs G where G is bipartite and G ϵ Hn. In this paper, we show that every graph in Bn is (n - 2)-edge fault-tolerant hamiltonian laceable if n ≥ 2 and every graph in Bn is (2n - 5)-edge fault-tolerant conditional hamiltonian if n ≥ 3.