World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FAULT-TOLERANT MAXIMAL LOCAL-CONNECTIVITY ON CAYLEY GRAPHS GENERATED BY TRANSPOSITION TREES

    https://doi.org/10.1142/S021926590900256XCited by:9 (Source: Crossref)

    The local connectivity of two vertices is defined as the maximum number of internally vertex-disjoint paths between them. In this paper, we define two vertices as maximally local-connected, if the maximum number of internally vertex-disjoint paths between them equals the minimum degree of these two vertices. Moreover, we show that an (n-1)-regular Cayley graph generated by transposition tree is maximally local-connected, even if there are at most (n-3) faulty vertices in it, and prove that it is also (n-1)-fault-tolerant one-to-many maximally local-connected.

    This work was supported in part by the National Science Council of the Republic of China under Contract NSC 96-2221-E-0009137-MY3.