Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The local connectivity of two vertices is defined as the maximum number of internally vertex-disjoint paths between them. In this paper, we define two vertices as maximally local-connected, if the maximum number of internally vertex-disjoint paths between them equals the minimum degree of these two vertices. Moreover, we show that an (n-1)-regular Cayley graph generated by transposition tree is maximally local-connected, even if there are at most (n-3) faulty vertices in it, and prove that it is also (n-1)-fault-tolerant one-to-many maximally local-connected.