World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue: Advances in Structural Identification, Damage Detection and Condition Assessment; Guest Editors: Prof. Ying Lei, Prof. Hoon Sohn and Dr. Ting-Hua YiNo Access

Dynamic Stability and Failure Probability Analysis of Dome Structures Under Stochastic Seismic Excitation

    https://doi.org/10.1142/S021945541440001XCited by:16 (Source: Crossref)

    The intrinsic relationship between deterministic system and stochastic system is profoundly revealed by the probability density evolution method (PDEM) with introduction of physical law into the stochastic system. On this basis, stochastic dynamic stability analysis of single-layer dome structures under stochastic seismic excitation is firstly studied via incorporating an energetic physical criterion for identification of dynamic instability of dome structures into PDEM, which yields to sample stability (stable reliability). However, dynamic instability is not identical to structural failure definitely, where strength failure can be experienced not only in the stable structure but also when the structure is out of dynamic stability. It is practically feasible to decouple the stochastic dynamic response of dome structures to be a stable one and an unstable one according to the generalized density evolution equation (GDEE). Consequently, the global failure probability can be investigated separately based on the corresponding independent stochastic response. For unstable failure probability assessment, the failure probability is the unstable probability if the dome's failure is attributed to instability, whereas inverse absorbing is firstly implemented to get rid of the stochastic response before instability and a complementary process is filled in the safe domain immediately to finally assess the probability of strength failure after dynamic instability.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures