World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Difference-Wavelet Method for Solving Generalized Density Evolution Equation in Stochastic Structural Analysis

    https://doi.org/10.1142/S0219455417500559Cited by:11 (Source: Crossref)

    The probability density evolution method (PDEM) provides a feasible approach for the dynamic response analysis of nonlinear stochastic structures. The key step in this regard is to solve a generalized density evolution equation (GDEE) in order to establish the probability density function (PDF). Previously, a finite difference method (FDM) has often been resorted to solve the GDEE. However, one may encounter the problem of mesh sensitivity in the application of FDM to the PDEM. To this end, a novel difference-wavelet method that can improve the finite difference result by means of a nonlinear wavelet density estimation method is proposed in the present paper. By exploiting the multi-resolution property of wavelet functions and by choosing the optimal scale at each instant, it is expected that the bothering mesh sensitivity issue in finite difference method can be overcome to some extent and a better probability density result can be obtained. In order to verify the proposed method, a single-degree-of-freedom (SDOF) oscillator and an 8-story frame structure are investigated in detail. The results show the notable superiority of the proposed method to finite difference method.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures