World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Vibration Characteristics of Hybrid Honeycomb Core Sandwich Structure with FG-CNT Reinforced Polymer Composite Faces under Various Thermal Fields

    https://doi.org/10.1142/S0219455421501625Cited by:9 (Source: Crossref)

    This paper presents the free and forced vibration characteristics of a hybrid honeycomb core sandwich structure consisting of a top and bottom FG-CNT reinforced polymer composite face sheet in a thermal environment. Different thermal fields like the uniform, linear and nonlinear temperature fields in the thermal environment along the thickness direction are considered to study the dynamic characteristics of the hybrid honeycomb core sandwich structure. The mathematical model is developed using Hamilton’s principle along with the third-order shear deformation theory. Five unknown modal coefficients are found using the modal superposition principle to calculate the forced vibration response. From the free and forced vibration results, it is observed that the FG-VΛ grading pattern face sheets with lower cell size honeycomb core and with higher cell wall thickness honeycomb core show better vibration characteristics. It is noticed that the sandwich structure with honeycomb core and FG-VΛ CNT reinforced polymer composite face has a higher critical buckling temperature in the thermal environment. Furthermore, for different percentages of critical buckling temperature, the natural frequencies and vibrating patterns for uniform, linear and nonlinear temperature fields are the same for the sandwich structure with UD, FG-VΛ and FG-ΛV CNT reinforced polymer composite faces. In addition, the resonant peak of the sandwich structure with FG-VΛ CNT reinforced polymer composite face in nonlinear temperature field shifts more toward the right, while that of the uniform temperature field shifts more toward the left in the velocity response.

    References

    • 1. A. C. Garay, J. A. Souza and S. C. Amico , Evaluation of mechanical properties of sandwich structures with polyethylene terephthalate and polyvinyl chloride core, J. Sandwich Struct. Mater. 18(2) (2016) 229–241. Crossref, ISIGoogle Scholar
    • 2. L. Zhang, B. Liu, Y. Gu and X. Xu , Modelling and characterization of mechanical properties of optimized honeycomb structure, Int. J. Mech. Mater. Des. 16 (2019) 1–12. ISIGoogle Scholar
    • 3. S. Zhang, R. Schmidt and X. Qin , Active vibration control of piezoelectric bonded smart structures using PID algorithm, Chin. J. Aeronaut. 28(1) (2015) 305–313. Crossref, ISIGoogle Scholar
    • 4. N. D. Duc, P. H. Cong, N. D. Tuan, P. Tran and N. Van Thanh , Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations, Thin-Walled Struct. 115 (2017) 300–310. Crossref, ISIGoogle Scholar
    • 5. A. Patel, R. Das and S. K. Sahu , Experimental and numerical study on free vibration of multiwall carbon nanotube reinforced composite plates, Int. J. Struct. Stabil. Dynam. 20(12) (2020) 2050129. Link, ISIGoogle Scholar
    • 6. F. Ebrahimi et al., On nonlinear vibration of sandwiched polymer-CNT/GPL-fiber nanocomposite nanoshells, Thin-Walled Struct. 146 (2020) 106431. Crossref, ISIGoogle Scholar
    • 7. Y. Yu and H.-S. Shen , A comparison of nonlinear bending and vibration of hybrid metal/CNTRC laminated beams with positive and negative Poisson’s ratios, Int. J. Struct. Stabil. Dynam. 20(14) (2020) 2043007. Link, ISIGoogle Scholar
    • 8. H.-S. Shen , Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct. 91(1) (2009) 9–19. Crossref, ISIGoogle Scholar
    • 9. H.-S. Shen and C.-L. Zhang , Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates, Mater. Des. 31(7) (2010) 3403–3411. Crossref, ISIGoogle Scholar
    • 10. Y. Fan, Y. Xiang and H.-S. Shen , Nonlinear dynamics of temperature-dependent FG-GRC laminated beams resting on visco-pasternak foundations, Int. J. Struct. Stabil. Dynam. 20(1) (2020) 2050012. Link, ISIGoogle Scholar
    • 11. J. Yang, X.-H. Huang and H.-S. Shen , Nonlinear vibration of temperature-dependent FG-CNTRC laminated beams with negative Poisson’s ratio, Int. J. Struct. Stabil. Dynam. 20(4) (2020) 2050043. Link, ISIGoogle Scholar
    • 12. C. Li, H.-S. Shen, H. Wang and Z. Yu , Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core, Int. J. Mech. Sci. 174 (2020) 105472. Crossref, ISIGoogle Scholar
    • 13. C. Li, H.-S. Shen and H. Wang , Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core, Nonlinear Dynam. 100 (2020) 3235–3252. Crossref, ISIGoogle Scholar
    • 14. C. Li, H.-S. Shen and H. Wang , Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core, Compos. Struct. 237 (2020) 111894. Crossref, ISIGoogle Scholar
    • 15. C. Li, H.-S. Shen and H. Wang , Nonlinear vibration of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core, Int. J. Struct. Stabil. Dynam. 19(3) (2019) 1950034. Link, ISIGoogle Scholar
    • 16. N. D. Duc, K. Seung-Eock, P. H. Cong, N. T. Anh and N. D. Khoa , Dynamic response and vibration of composite double curved shallow shells with negative Poisson’s ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads, Int. J. Mech. Sci. 133 (2017) 504–512. Crossref, ISIGoogle Scholar
    • 17. N. D. Duc, T. Q. Quan and V. D. Luat , Nonlinear dynamic analysis and vibration of shear deformable piezoelectric FGM double curved shallow shells under damping-thermo-electro-mechanical loads, Compos. Struct. 125 (2015) 29–40. Crossref, ISIGoogle Scholar
    • 18. D. D. Nguyen , Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations, J. Sandwich Struct. Mater. 20(3) (2018) 351–378. Crossref, ISIGoogle Scholar
    • 19. N. D. Dat, T. Q. Quan, V. Mahesh and N. D. Duc , Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment, Int. J. Mech. Sci. 186 (2020) 105906. Crossref, ISIGoogle Scholar
    • 20. D. Nguyen Dinh and P. D. Nguyen , The dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations, Materials 10(10) (2017) 1194. Crossref, ISIGoogle Scholar
    • 21. N. V. Thanh, N. D. Khoa, N. D. Tuan, P. Tran and N. D. Duc , Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations, J. Therm. Stress. 40(10) (2017) 1254–1274. Crossref, ISIGoogle Scholar
    • 22. N. Duc, Nonlinear static and dynamic stability of functionally graded plates and shells (Vietnam National University Press, Hanoi, 2014). Google Scholar
    • 23. D. D. Nguyen and Q. Q. Tran , Nonlinear dynamic analysis of imperfect FGM double curved thin shallow shells with temperature-dependent properties on elastic foundation, J. Vib. Control 21(7) (2015) 1340–1362. Crossref, ISIGoogle Scholar
    • 24. V. T. T. Anh and N. Dinh Duc , Nonlinear response of a shear deformable s-FGM shallow spherical shell with ceramic-metal-ceramic layers resting on an elastic foundation in a thermal environment, Mech. Adv. Mater. Struct. 23(8) (2016) 926–934. Crossref, ISIGoogle Scholar
    • 25. D. D. Nguyen, Q. Q. Tran and D. K. Nguyen , New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature, Aerosp. Sci. Technol. 71 (2017) 360–372. Crossref, ISIGoogle Scholar
    • 26. N. Van Thanh, V. Dinh Quang, N. Dinh Khoa, K. Seung-Eock and N. Dinh Duc , Nonlinear dynamic response and vibration of FG CNTRC shear deformable circular cylindrical shell with temperature-dependent material properties and surrounded on elastic foundations, J. Sandwich Struct. Mater. 21(7) (2019) 2456–2483. Crossref, ISIGoogle Scholar
    • 27. N. D. Dat, N. V. Thanh, V. MinhAnh and N. D. Duc , Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer, Mech. Adv. Mater. Struct. (2020) 1–18, https://doi.org/10.1080/15376494.2020.1822476. Crossref, ISIGoogle Scholar
    • 28. N. D. Duc , Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation, Compos. Struct. 99 (2013) 88–96. Crossref, ISIGoogle Scholar
    • 29. D. T. Manh, V. T. T. Anh, P. D. Nguyen and N. D. Duc , Nonlinear post-buckling of CNTs reinforced sandwich-structured composite annular spherical shells, Int. J. Struct. Stabil. Dynam. 20(2) (2020) 2050018. Link, ISIGoogle Scholar
    • 30. S. S. Mirjavadi, A. Matin, N. Shafiei, S. Rabby and B. Mohasel Afshari , Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam, J. Therm. Stress. 40(10) (2017) 1201–1214. Crossref, ISIGoogle Scholar
    • 31. S. S. Mirjavadi, M. Forsat, A. Hamouda and M. R. Barati , Dynamic response of functionally graded graphene nanoplatelet reinforced shells with porosity distributions under transverse dynamic loads, Mater. Res. Exp. 6(7) (2019) 075045. Crossref, ISIGoogle Scholar
    • 32. M. Forsat , Investigating nonlinear vibrations of higher-order hyper-elastic beams using the hamiltonian method, Acta Mech. 231(1) (2020) 125–138. Crossref, ISIGoogle Scholar
    • 33. S. S. Mirjavadi, M. Forsat, A. F. Nia, S. Badnava and A. Hamouda , Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells, Adv. Nano Res. 8(2) (2020) 149–156. ISIGoogle Scholar
    • 34. B. M. Afshari, S. S. Mirjavadi, Y. A. Dolatabad, M. Aghajani, M. K. B. Givi, M. Alipour and M. Emamy , Effects of pre-deformation on microstructure and tensile properties of alznmgcu alloy produced by modified strain induced melt activation, Trans. Nonferrous Metals Soc. China 26(9) (2016) 2283–2295. Crossref, ISIGoogle Scholar
    • 35. A. Boudjemai, R. Amri, A. Mankour, H. Salem, M. Bouanane and D. Boutchicha , Modal analysis and testing of hexagonal honeycomb plates used for satellite structural design, Mater. Des. 35 (2012) 266–275. Crossref, ISIGoogle Scholar
    • 36. X. Zhou, L. Wang, D. Yu and C. Zhang , Dynamic effective equivalent stiffness analysis on the periodical honeycomb reinforced composite laminated structure filled with viscoelastic damping material, Compos. Struct. 193 (2018) 306–320. Crossref, ISIGoogle Scholar
    • 37. V. N. Burlayenko and T. Sadowski , Linear and nonlinear dynamic analyses of sandwich panels with face sheet-to-core debonding, Shock Vib. 2018 (2018) 5715863. ISIGoogle Scholar
    • 38. M. Kheirikhah, S. Khalili and K. M. Fard , Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory, Europ. J. Mech.-A/Solids 31(1) (2012) 54–66. Crossref, ISIGoogle Scholar
    • 39. S.-N. Tsai and A. C. Taylor , Vibration behaviours of single/multi-debonded curved composite sandwich structures, Compos. Struct. 226 (2019) 111291. Crossref, ISIGoogle Scholar
    • 40. F. Kolahdouzan, A. G. Arani and M. Abdollahian , Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate, Steel Compos. Struct. 26(3) (2018) 273–287. ISIGoogle Scholar
    • 41. I. Kaur, P. Lata and K. Singh , Forced flexural vibrations in a thin nonlocal rectangular plate with Kirchhoffs thin plate theory, Int. J. Struct. Stabil. Dynam. 20(9) (2020) 2050107. Link, ISIGoogle Scholar
    • 42. M. Arunkumar, J. Pitchaimani, K. V. Gangadharan and M. C. L. Babu , Influence of nature of core on vibro acoustic behavior of sandwich aerospace structures, Aerosp. Sci. Technol. 56 (2016) 155–167. Crossref, ISIGoogle Scholar
    • 43. N. George, P. Jeyaraj and S. Murigendrappa , Buckling and free vibration of nonuniformly heated functionally graded carbon nanotube reinforced polymer composite plate, Int. J. Struct. Stabil. Dynam. 17(6) (2017) 1750064. Link, ISIGoogle Scholar
    • 44. A. Draoui, M. Zidour, A. Tounsi and B. Adim , Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT), J. Nano Res. 57 (2019) 117–135. Crossref, ISIGoogle Scholar
    • 45. N. George, J. Pitchaimani, S. Murigendrappa and M. Lenin Babu , Vibro-acoustic behavior of functionally graded carbon nanotube reinforced polymer nanocomposite plates, Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. 232(7) (2018) 566–581. ISIGoogle Scholar
    • 46. V. Gunasekaran, J. Pitchaimani, L. B. M. Chinnapandi and A. Kumar , Analytical solution for sound radiation characteristics of graphene nanocomposites plate: Effect of porosity and variable edge load, Int. J. Struct. Stabil. Dynam. 21(6) (2021) 2150087. Link, ISIGoogle Scholar
    • 47. V. Mellert, I. Baumann, N. Freese and R. Weber , Impact of sound and vibration on health, travel comfort and performance of flight attendants and pilots, Aerosp. Sci. Technol. 12(1) (2008) 18–25. Crossref, ISIGoogle Scholar
    • 48. J. K. Paik, A. K. Thayamballi and G. S. Kim , The strength characteristics of aluminum honeycomb sandwich panels, Thin-Walled Struct. 35(3) (1999) 205–231. Crossref, ISIGoogle Scholar
    • 49. A. K. Kaw , Mechanics of Composite Materials (CRC Press, 2005). CrossrefGoogle Scholar
    • 50. L. Hao, L. Geng, M. Shangjun and L. Wenbin , Dynamic analysis of the spacecraft structure on orbit made up of honeycomb sandwich plates, in IEEE Int. Conf. Computer Science and Automation Engineering (CSAE), Vol. 1 (IEEE, 2011), pp. 83–87. Google Scholar
    • 51. Y. Liu and Y. Li , Vibration and acoustic response of rectangular sandwich plate under thermal environment, Shock Vib. 20(5) (2013) 1011–1030. Crossref, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Remember to check out the structures