World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Code-Type Method to Assess the Running Safety of Railway Vehicles on Bridges Shaken by Earthquakes Including Girder’s Torsional Motion

    https://doi.org/10.1142/S0219455423500013Cited by:4 (Source: Crossref)

    The safety of railway vehicles running on bridges needs to be evaluated in the seismic design of bridges. This study examined the spectral intensity calculated from the lateral vibration of the bridge deck during earthquakes, a Japanese code-based index to measure bridge vibration’s strength. In addition, the effect of the torsion of the bridge deck on vehicle derailment is investigated using a nonlinear vehicle–track–bridge model. The bridge deck torsion increases the derailment risk, especially for bridges with a low natural frequency. The reason lies in that the lateral and torsional deck motions are highly correlated for bridges with lower frequency. Based on this observation, a code-type formula was proposed to evaluate the vehicle running safety including both lateral and torsional motions of the bridge deck. The accuracy of the proposed formula was demonstrated by comparison with vehicle–track–bridge simulation excited by ground motion records. The new procedure overcomes the non-conservative assessment of derailment caused by ignoring bridge torsion.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures